
Introduction

An important part in EEG-based BCI is the

classification of circumscribed and transient EEG

changes which are recorded during different types of

motor imagery such as imagination of left-hand or

right-hand movement. Features such as power

spectrum, Hjorth parameters, or adaptive

autoregressive parameters are extracted in EEG

recordings of overlaying sensorimotor areas located

over central and neighboring areas. For the

classification of the features, linear discrimination

analysis, neural networks, and hidden Markov models

(HMMs) are used [1].

PCA is a well-known linear transformation for

effective lower dimensional representation of the data.

The principal components directions are merely sought

by the dominant eigenvectors of the data covariance

matrix. It is also known that PCA minimizes the

reconstruction error. Because of its simplicity and good

performance, PCA has been used in many areas such

as image processing, speech processing, and etc for

dimensionality reduction or feature extraction [6].

HMM and LDS are widely-used probabilistic

methods for modeling time series data and belong to a

class of linear Gaussian models [2]. Both HMM and
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LDS can represent dynamics by the hidden states

which contains information about the past. They

assume that the past, present and future observations

are statistically independent known the state at any

time and hidden states obey the Markov chain. LDS

represents the past information through a real-valued

hidden state vector, whereas HMM represents it

through discrete-valued states. Therefore, LDS can be

viewed as a continuous-state analogue of HMM. In

LDS, the dependency between the present state vector

and the previous state vector is specified through the

dynamic equations of the system and the noise model.

When these equations are linear and the noise model

is Gaussian, the LDS is also known as a Kalman filter

model. Almost BCI research group have focused the

HMM model, not confirming state dynamicity of EEG

signal [3]. In this paper, we employ the LDS as an

alternative to HMM for the task of EEG classification.

We use the PCA to preprocess the observation

sequence before the data is fed into either HMM or

LDS. Our experimental study shows that PCA-based

preprocessing accelerates the convergence of learning

LDS and improves the classification performance.

Detailed description of our proposed methods is

illustrated in Section 3.

PCA and LDS

PCA

The PCA is a classical multivariate data analysis

method that is useful in linear feature extraction and

data compression. The PCA finds a linear

transformation v = Wu such that the retained variance

is maximized. It can also be viewed as a linear

transformation which minimizes the reconstruction

error. The row vectors of W correspond to the

normalized orthogonal eigenvectors of the data

covariance matrix. 

Let us denote the data covariance matrix by Ru =

E[UUT]. Then the SVD of Ru  gives Ru = DuDuUu
T where

Uu is the eigenvector matrix (i.e.,modal matrix) and Du

is the diagonal matrix whose diagonal elements

correspond to the eigenvalues of Ru. Then the linear

transformation W for PCA is given by W=Uu
T. For

dimensionality reduction, one can choose p dominant

column vectors in Du that are eigenvectors that have

the largest eigenvalues to construct a linear transform

W.

LDS

Linear time-invariant dynamical systems (also known

as linear Gaussian state space models) are described

by 

xt+1 = Axt + wt wt∼N(0,Q) (1)

yt = Cxt + et et∼N(0,R) (2)

where A ∈ Rk×k is the state transition matrix and  C

∈ RP×k is the output matrix.

The output yt is a linear function of the state xt

which evolves through first-order Markov chain. Both

state and output noise, w t and e t are zero-mean

normally distributed random variables with covariance

matrices Q and R, respectively. Only the output of the

system is observed, the state and all the noise variables

are hidden.

In case of HMM, we describe the state equation

instead of (1) as

xt+1 = WTA[Axt + wt] wt∼N(0,Q) (3)

where WTA[·] is the winner-take-all nonlinearity

defined such that WTA[x] for any vector x is a new

vector with unity in the position of the largest

coordinates of the input and zeros in all other

positions. Therefore, we can represent the equation

(3) as a state transition matrix T, where Tij = P(xt+1 =
jth state | xt = ith state) [2]. From this, we can know

the only difference between LDS and HMM is the

dynamics of state - continuous in LDS and discrete in

HMM. 
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The problems are to estimate the hidden states

given observations and a model and to learning the

model parameters - inference and system

identification. Inference and system identification, or

learning, can be solved by Kalman smoothing

recursions and expectation maximization (EM) method,

respectively. More details in appendix.

Proposed Methods

We consider C3 and C4 channels located in

sensorimotor cortex related with (left or right)

movement as well as imagination of movement. Fig. 1

shows our proposed methods, PCA-LDS1 and PCA-

LDS2. Both methods employ data segmentation and

feature extraction using PCA. In the PCA-LDS1, only

two LDS models are learned, corresponding

imagination of either left-hand or right-hand

movement. Binary classification is carried out by

likelihood scoring. In PCA-LDS2, 4 different LDS

models are learned, corresponding either imagination

of left-hand movement for C3 and C4 or imagination

of right-hand movement for C3 and C4. Thus, four

LDS models results in 4 likelihoods. For final decision,

we employ the MLP feeding the likelihood scores.

PCA-LDS2 does not consider coupling between C3 and

C4 channels unlike PCA-LDS1. So, we can verify

whether the interaction between channels affect the

classification. 

Feature Extraction

We decompose the data into N overlapping blocks

to construct M×N data matrix (see Fig. 2) which is

used to find a p by M matrix W for PCA. 

In our case, we calculate 4 matrices - WC3, L, WC4, L,

WC3, R and WC4, R (where subscripts C3 and C4 denote

channels, L and R correspond to imagination of left-

hand and right-hand movement, respectively) in

다채널 뇌파 분류를 위한 주성분 분석 기반 선형동적시스템 55

Fig. 1. Schematic diagram for (a) PCA-LDS1 and (b) PCA LDS2



training phase. Then feature vector is computed by

vn = Wun (4)

The noise will mainly affect the directions of the

principal components corresponding to smaller

eigenvalues and the information will mainly affect the

directions of the others corresponding to higher

eigenvalues. Therefore, eliminating redundant

components can reduce the artifacts such as eye

blinking, eye movement, muscle activity, interference

of other channels, and etc. And the other components,

known as principal components can function as a kind

of filter that extract the information (Fig. 3).

Dimensionality reduction also can reduce

computational complexity in LDS. 

Classification

PCA-LDS1 consist of LDS left and LDS right. Each LDS

model is learned from a training set of data recorded

during imagining movement, either left-hand or right-

hand, respectively. In test phase, it feeds given a set of

feature vectors, Y = { y1, y2, …, yN}, where

yn = { (v1, n, … , vp, n)C3, (v1, n, … , vp, n)C4 },  (5)

vn, C3 = WC3 un, C3 and vn, C4 = WC4 un, C4 which is

obtained from the set of test data (see Fig. 1 and

equation (4)). And then, each LDS model computes

likelihoods, P(Y ｜LDS left) and P(Y ｜LDS right)and , and

an appropriate class is assigned depending on which

likelihood is larger.

In the case of PCA-LDS2, feature vector for each

LDS model, LDSC3, L, LDSC4, L, LDSC3, R and LDSC4, R is

given by 

yn = { (v1, n, v2, n, … , vp, n) },  (6)

where v n=Wu n. Each LDS model compute

likelihoods, P(Y ｜LDS CS, left), P(Y ｜LDS CS, left), P(Y ｜

LDS CS, right), and P(Y ｜LDS C4, right). These likelihood

scores are fed into MLP to make a decision. And the

MLP is trained in such a way that if the data is left-

imagination, then the output is −1, otherwise the

output is +1.
We can assume the PCA-LDS1 considers the

interaction between channels, but has more complexity

than PCA-LDS2 because its dimension of feature vector

is twice larger than PCA-LDS2.

Experimental Results

Two bipolar EEG-channels were recorded over left

and right sensorimotor hand areas, close to electrode

positions C3 and C4. The EEG are sampled at 128 Hz

and bandpass filtered between 0.5 and 30 Hz. Course

of the experimental trial is followed. From 0 to 2 sec a

fixation cross was presented, followed by the cue at 2

sec. At 3 sec an arrow was displayed at the centre of
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Fig. 2. Data segmentation

Fig. 3. Principal component - more upper and left, higher
principal componetnt



the monitor for 1.25 sec. Depending on the direction

of the arrow presented left or right the subject was

instructed to imagine a movement of either the left or

the right hand. And then, feedback session continues

from 4.25 to 8.0 sec. One session constitutes 40 times

repeating the course of the trial: 20-left and 20-right.

The total session is 4, so the number of trial is 160 :

80-left and 80-right. We did not use feedback session.

So the data from 3 to 4.25 sec are only used. Detailed

description on data can be found in [5]. 

In order to show that PCA is a good feature

extractor, we compare the PCA-based features with

Hjorth parameters [3] and raw data. We also compare

LDS to continuous HMM, where methods are called

PCA-HMM1 and PCA-HMM2. Methods based on the

Hjorth parameter or raw data, are called as HJORTH-

LDS1 or RAW-HMM1. 

In the case of PCA and HJORTH, the window size

is 0.5 sec, 64 points and each window is overlapped

by 87.5%, i.e. shifted by 8 points. In the case of PCA,

we reduce the dimension to 32. Each experiments is

repeated 10 times using cross-validation - the training

and test data are selected randomly and non-

overlappingly among 160 trials with the ratio of

training set and the testing set, 1 to 1. Figs. 4 and 5

show mean, maximum, and minimum of classification

accuracy for several numbers or dimensions of state in

order to obtain the optimal number and dimension of

state for feature, using PCA-HMM1/2 and PCA-LDS1/2,

respectively. In these figures, the x-axis of (a) shows

the number of state values for HMM, and the x-axis of

(b) represents the dimension of the state vector in

LDS. The y-axis of both (a) and (b) represents the

classification accuracy. Finding the optimal number

and dimension of state, we compare the classification

accuracy for each feature and each classifiers in Table

1. In the case using Hjorth parameter which is known

suitable feature for EEG, the result is worse than that

using raw data, because Hjorth parameter extract

wrong information using the data mixed some artifact.
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Table 2. Convergence speed [sec] which is estimated by
matlab m-files on a Pentium IV 1.7GHz.

HMM1 HMM2 LDS1 LDS2

124.2660 78.9530 63.6250 42.1250

Fig. 4. Classification performance for PCA-based features:
PCA-HMM1 and PCA-HMM2

Fig. 5. Classification performance for PCA-based features:
PCA-LDS1 and PCA-LDS2

Table 1. Classification accuracy (%).

HMM1 HMM2 LDS1 LDS2

PCA 77.50 77.50 75.25 76.50

RAW 60.63 64.38 64.44 71.25

HJORTH 56.88 62.50 58.75 59.50



But in the case using PCA, we observed that the

performance was improved by almost 10%, that the

convergence speed of learning classifier was faster

than others. So we confirm PCA is a suitable feature

extractor for EEG signal. Both HMM and LDS showed

similar performance, which might imply that the state

dynamicity of EEG signal is not either purely

continuous or purely discrete. However, as Table 2

where each classifier is compared the convergence

speed for the optimal number and dimension of state

found in Fig. 4 and 5, LDS required less complexity

than HMM in the context of learning and it has more

stable result than HMM in test phase. The case of

using one classifier and different classifiers for each

channel also showed similar performance, which might

imply that the interaction between channels does not

affect the results. 

Conclusion

In this paper we presented LDS-based methods for

multichannel EEG classification. We also employed

PCA-based preprocessing so that LDS were trained

from PCA-based features. We observed that PCA-based

features had good performance and accelerated the

convergence of learning LDS. Although the

classification results of LDS and HMM were not

different, the LDS is less expensive than HMM in

complexity. Currently we are investigating switching

state space models which is a combination of LDS and

HMM for EEG classification.

Appendix

AAllggoorriitthhmm OOuuttlliinnee:: LLDDSS

We consider a sequence of T output vectors yt  and

state vectors xt. Due to the Markov property, the joint

probability density, P(xt, yt) can be described as

P(xt, yt) (7)

We assume a Gaussian initial state density with

mean π1 and covariance matrixV1 , P(x1) ~ N(π1, V1).

Since both state noise and output noise are also

assumed to be Gaussian, we have P(yt | xt) ~ N(Cxτ, R)

and P(xt | xt-1) ~ N(Axt−1, Q). Therefore, the log-

likelihood is given by 

(8)

The EM algorithm of LDS is below. This procedure

iterates an E-step, which is also called Kalman

smoothing recursions which is the method for

inference and an M-step. In E step, we fix the current

parameters and compute the posterior probabilities

over the hidden states given the observations, 

Q = E [log P({x}, {y} | {y})] ,    (9)

which depends on E [xt,|{y}], E [xt xt-1′|{y}] and

denoted by x∧t, Pt and Pt, t-1, respectively. In M step, we

obtain the parameters {A, C, Q, R, V1,  π1}by

maximizing the expected log likelihood of the

parameters, (3) using the posterior distribution

computed in E-step. See [4] for more details.

■Select the dimension of state.

■Initialize parameters of the model.

■Repeat until bound on log likelihood has

converged:

■E-step

Denote xt
τ ≡ E (xt,|{y}τ1 ) and Vt

τ ≡ Var (xt,|{y}τ1 ).

- Forward recursions:   

where x1
0 = π1 and V1

0 = V1.
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- Backward recursions;

which is initialized as .

- Calculate

■M-step

Update:
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