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Abstract: Among many newly raised issues in neuroscience, we have been particularly interested in three issues, time coding,

the role of coherent activities, and the role of chaotic activities. The Bifurcating Neuron (BN) is our model neuron designed

with these three issues in mind: it is a chaotic neuron that can deal with time coding and has a built-in mechanism to

incorporate the influence of coherent activity in its environment. The Bifurcating Neuron Network 1 (BNN-1) is a binary

associative memory based on chaotic attractors. The BNN-1, utilizing the bistability of the BN controlled by attractor-merging

crisis, was shown to have a better recall ability than the continuous-time Hopfield network. The BNN-1 is particularly suited for

circuit realization because the only required circuit components are relaxation oscillators and harmonic oscillators. Another

feature of the BNN-1 is that its chaotic activity is self-organizing: it starts in a maximally chaotic state and settles down to a less

chaotic state as a recall process proceeds. The BN Network 2 (BNN-2) is another BN network that is designed to store analog

patterns. It is based on the amplitude-to-phase transformation characteristics of the BN and the constructive interference, in the

sense of wave optics, among neuronal spikes. A Hebbian learning scheme results in the formation of attractors with large

basins of attraction. Also, the firing-time pattern of BNs induced by the same input pattern becomes different when the

frequency of the relaxation level oscillation changes, and this led us to consider the possibility of volume-holographic memory.

In a numerical simulation, we could configure the BNN-2 to maintain memories of two sets of patterns, one of which becomes

accessible when the frequency of the relaxation level oscillation is tuned to that of the recording phase.

Key words: integrate-and-fire neurons, pulse-coupled neural networks, bifurcating neurons, bifurcating neuron networks,

temporal coding, coherent activities, chaos, associative memory.

요 약: 최근 뇌과학 분야에서 관심을 모으는 여러 가지 이슈 중, 우리는 time coding, coherent activity의 역할, chaotic activity의

역할 등의 세 가지에 특별한 관심을 가지고 있다. Bifurcating Neuron (BN)은 이러한 세 가지 이슈를 염두에 두고 개발된 독자적

인 뉴런 모델이다. 즉, BN은 time coding을 기반으로 하여, 신경망 내에서의 coherent activity의 영향을 반영하는 모델이다.

Bifurcating Neuron Network 1 (BNN-1) 은 chaotic attractor를 기반으로 한 이진 연상메모리이다. BNN-1은 attractor-merging

crisis의 지배 하에 있는 BN의 bistability를 이용함으로 해서 continuous-time Hopfield network보다 우수한 연상능력을 보여주고

있다. 또한, BNN-1은 relaxation oscillator와 harmonic oscillator만으로 구현이 가능한 장점을 가지고 있다. 또 다른 장점은 BNN-

1의 chaotic activity가 self-organizing하다는 점을 들 수 있다. 즉, 연상 초기에는 지극히 chaotic한 상태에서 시작하여 연상작용이

완료됨에 따라 보다 덜 chaotic한 상태로 전이한다. 이러한 BNN-1의 특성은 특히 BNN-1을 optimization problem의 해법에 응용

할 때 특히 유용하다. Bifurcating Neuron Network 2 (BNN-2)는 또 다른 BN을 기반으로 하는 연상메모리로서, 아날로그 패턴을

저장할 수 있다. BNN-2는 BN의 amplitude-to-phase 변환특성과 뉴런 펄스의 보강간섭원리를 이용하고 있다. Hebbian learning에

따라 여러 가지 패턴을 저장할 수 있으며, 각각의 패턴은 네트워크 상태공간에서 큰 basin을 가진 attractor를 형성한다. 또한, BN
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INTRODUCTION

There has been a continuing debate on the way

information is encoded in neuronal spike trains. Rate

coding, the most widely accepted coding scheme

assumes that information is represented by the mean

firing rate of a neuron (1). Rate coding has proven to

be valid in some neuronal information paths, e.g., in

sensory neurons and motor neurons, but its validity in

other parts of the brain is questionable. Recent

experimental studies are revealing a growing number

of new facts beyond the explanation of rate coding

and are suggesting the possibility of information

coding in the precise timing of neuronal spikes,

namely, time coding (2). An especially descriptive

example supporting time coding in the brain is

provided by O’Keefe and Recce (3), who studied the

firing behavior of hippocampal place cells (4). They

showed that the firing phases of place cells with

respect to a theta rhythm have a high level of

correlation with the animal’s location on a linear

runway.

Another topic of growing interest is the role of

coherent activities in the brain, especially those in the

gamma-band centered around 40Hz. Some of the early

observations of gamma-band oscillatory activities were

made in the olfactory bulb and cortex of the rabbit

(5), in the olfactory systems of the cat and the rat (6),

in a variety of structures of the cat brain (6), in the cat

primary visual cortex (7) (8), in the monkey visual

cortex (9), and in EEG recordings from the human

skull above association and motor areas (10). The

observation of a synchronous activity in the cat visual

cortex by Gray and Singer (7) has been drawing

special attention because, in their experiments, the

synchronous activity was stimulus-specific and was

observed across cortical regions, e.g., across multiple

visual association areas, with a small phase variation.

Gray and Singer related their result to the so called

feature-binding hypothesis (11) (12), which states that

synchrony provides a means to bind together in time

the features that represent a particular stimulus. The

searchlight hypothesis of Crick (13) is another

speculation on the role of synchronous activity in

relation to the question of consciousness.

Yet another topic of growing interest in

neuroscience is the role of chaotic activities in the

brain. Different levels of chaotic activities have been

observed in many experimental studies of

electroencephalogram (EEG) signals, for example, in

the simian motor cortex (14), in the human brain

during a sleep cycle (15) and during an epileptic

seizure (16), and in the olfactory bulb of the rabbit (5)

(17). The mounting evidence of chaotic activities in

the brain triggered much theoretical reflection on the

possible role of chaotic activities in brain functions (18)

(19) (20) (21). For instance, Freeman and his

coworkers (5) observed in a study of the olfactory

system of the rabbit that the nervous activity of the

olfactory system switches from a chaotic to a periodic

state whenever a familiar odor is detected. This

experimental observation stimulated their reflection on

the role of chaos in perception processes and led

them to postulate that chaos can serve as the ground

state of a perception process, i.e., an elevated state

that has quick transition routes to many periodic

states.

A question that has concerned us ever since we

were introduced to the aforementioned topics is this:

what would become possible where these three topics
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으로부터의 출력 펄스 열이 coherent activity의 주파수에 따라 달라지므로, BNN-2는 volume holography와 유사한 특성을 가지게

된다. 수치해석을 이용한 시뮬레이션에서 BNN-2가 두 가지 그룹의 패턴들을 coherent activity의 주파수를 달리하여 독립적으로

기억, 연상할 수 있음을 확인할 수 있었다.

주요어: integrate-and-fire 뉴런, pulse-coupled 신경망, bifurcating 뉴런, bifurcating 신경망, temporal coding, coherent

activities, 혼돈, 연상메모리.



converge? In other words, what would be the

potential of an artificial neural network that is based

on time coding and, at the same time, utilizes both

coherence and chaos? In order to investigate this

question, we started with the integrate-and-fire neuron

(22), the simplest, time-coding-aware model neuron,

and introduced coherence and chaos into the model.

In order to introduce coherence into our model

neuron, we needed to define first the role of

coherence. The one that we chose over others is that

coherent activities in a network can provide a

common time reference to the constituent neurons.

This role of coherence may sound excessively general

or even trivial but is certainly essential because, in the

absence of a time reference, the information that time

coding can carry would be quite limited. The

aforementioned O’Keefe and Recce experiment (3) is

a good example for such a role of coherence (the

theta rhythm). The fact that rate coding is common in

sensory or motor neurons is also consistent with such

a role of coherence: rate coding must be the only

choice when a common time reference extending

throughout the nervous system is not available. As a

way to provide a time reference, we introduced a

common sinusoidal oscillation to the relaxation level of

the integrate-and-fire neuron.

The second goal of introducing chaos into our

model neuron was achieved at the same time as we

introduced a sinusoidal oscillation to the relaxation

level of the integrate-and-fire neuron. The resultant

neuron, which we call a bifurcating neuron (BN), has

the intrinsic ability to switch between a regular and a

chaotic state as the amplitude of the relaxation level

oscillation changes. We expected the chaotic activities

observed in the BN would be useful in the “ready-

state”of a network where the network is ready to

respond to an external stimulus. We have the

following scenario in mind for our design of BN

networks: a stimulus known to a network causes the

interconnections in the network to interfere

constructively, and thereby suppress the initial chaotic

activity in the network. This scenario is in fact inspired

by the experimental observation of Freeman and

Skarda (5) and also by some recent studies that show

that the behavior of individual neurons in isolation is

more irregular than that of neurons in a network (23).

In the following sections, we introduce the BN and

two distinct types of BN networks, the Bifurcating

Neuron Network 1 (BNN-1) and the Bifurcating

Neuron Network 2 (BNN-2). These networks will

demonstrate what kind of computation can become

possible when time-coding-aware model neurons

cooperate under a common time reference.

THE BIFURCATING NEURON

A neuron in a neural network receives inputs from

many different parts of the brain and is also subject to

noise from inside and outside. Also, the same input

can have different effects depending on the nature and

the position of the synapse. Consideration of every

detail of the interaction of a neuron with its

environment would be impractical, so, we made the

following rather simplistic assumptions about the

artificial environment surrounding an integrate-and-fire

neuron. First, the environment provides a persistent

incoherent input to the neuron, which helps the

neuron keep active at an optimal operating point.

Second, the environment also provides a persistent

coherent input to the neuron, which is common to all

the neurons in the same network and serves as a time

reference. The BN, an integrate-and-fire neuron

augmented by such inputs from the environment, is

defined by the following set of equations:

(1)

where x, θ and ρ are the internal potential, the

threshold level, and the relaxation level of a BN,

respectively, c is the buildup rate of the internal

potential, and ρo and f are the amplitude and

frequency of the relaxation level oscillation. Figure 1
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depicts the behavior of the BN: it keeps firing due to

an incoherent source while the relaxation level is

oscillating due to a coherent source. The recurrent

relation between the successive firing times t(n+1)

and t(n) can be derived by considering the ratio of

the two perpendicular sides of the shaded triangle: 

(2)

An important point to emphasize again here is that

the coherent source serves as a time reference to the

neuron. This point is clearly demonstrated in the

bifurcation diagram in Fig. 2, that shows the firing

times of the neuron with respect to a modulus of 1,

which is the period of the sinusoidal oscillation of the

relaxation level. Although the firing of the BN here is

not always phase-locked to the sinusoidal oscillation,

the firing time exhibits a clear structure when it is

represented relative to the sinusoidal oscillation. As

well as providing a time reference, the coherent source

turns the neuron into a chaotic neuron. This fact is

also demonstrated in Fig. 2, where one can see that

the firing pattern is bifurcating until it becomes chaotic

as the amplitude of the sinusoidal oscillation increases. 

THE BIFURCATING NEURON NETWORK 1

The BNN-1 is a binary associative memory

exploiting the bistability of the BN which appears

when the average firing frequency of a BN is half that

of the relaxation level oscillation. The two chaotic

attractors which account for the bistability are subject

to attractor-merging crisis (24). Merging or separation

of the two attractors is critically dependent on the

amplitude of the relaxation level oscillation. Near the

point of crisis, a sinusoidal perturbation in the

threshold level induced by an incoming spike train can

bias the bistability, thereby inducing a binary

transition. The result is a binary associative memory

where a memory is represented by a chaotic attractor.

Bistability and Attractor-Merging Crisis of the BN

Under a certain combination of parameters, the BN

exhibits bistability and attractor-merging crisis due to

the translational symmetry of the BN. If we change

t t
c c

ft nn n
o

++ == ++ ++1

1
2

ρ πsin ( )

22 이기혁

Figure 2 The bifurcation diagram of the BN for c = f = 1 :
the bifurcation parameter here is the amplitude ρo of the
sinusoidal oscillation in the relaxation level. The vertical axis
shows the firing times of the BN in the sense of modulus 1.

Figure 3 The bifurcation diagrams of the BN for f = 2: the
bifurcation parameter here is the amplitude ρo of the
sinusoidal oscillation in the relaxation level. The vertical axis
shows the firing times of the BN in the sense of modulus 1.

Figure 1 The time evolution of the BN: the recurrent
relation between the successive firing times t(n) and t(n+1)
can be derived by considering the ratio of the two
perpendicular sides of the shaded triangle.



every occurrence of t n to t n+1/ f in the recurrent

relation (2), the equation remains unchanged. Figure 3

shows the bifurcation diagrams of the BN when f = 2.
There are two symmetric attractors which divide the

entire state space [0,1), in the sense of a modulus of 1,

into two equal intervals. There is an unstable fixed

point at t = 0.5, whch is separating the two attractors.

When the attractors expand until it touches the

unstable fixed point, they undergoes a crisis and

collapse into a single fully chaotic attractor. The value

of the bifurcation parameter ρo at which the attractor-

merging crisis takes place is called a crisis point ρc
o 䥿

0.3663. The bistability due to the two symmetric

attractors is, in fact, a special case of the multi-stability

of the BN. When f = 3, the BN has three symmetric

attractors, thereby exhibiting tri-stability. Obviously, as

f is increased further, the BN will come to exhibit

multi-stability.

Controlling the Bistability of the BN

Now that we have found that the BN has bistability

and exhibits attractor-merging crisis, the next question

is how to couple them together to form a network.

What we need now is a coupling scheme that can

break the translational symmetry of the BN in order to

control the bistability. Suppose we introduce a

sinusoidal oscillation at the threshold level, which is

half the frequency of that of the relaxation level

oscillation. Figure 4 shows the behavior of the BN for

three different amplitudes of the threshold oscillation.

In all the three cases, it is assumed that the driving

amplitude ρo is a little higher than the crisis point. This

means that, in case (b), the BN will be in a fully

chaotic state and can fire at any point in the state

space [0,1) in the sense of a modulus of 1. In case (a),

the symmetry that gives rise to the two symmetric

chaotic attractors of the BN is now broken. As a result,

the first half of the state space becomes more stable

than the second half, thereby the BN is more likely to

fire in the first half than in the second half. The

situation is reversed in case (c). The bottom line is that

the translation symmetry of the BN is broken by the

sinusoidal oscillation of the threshold level. In other

words, the preference of the BN over the two

symmetric attractors can be controlled by the threshold

level oscillation. The bifurcation diagrams in Fig. 5

summarizes the behavior of the BN in response to the

change in ε = θ(0). It is interesting to note that the

overall shape of the bifurcation diagram tends to recall

the sigmoidal curve.
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Figure 4 Breaking the translational symmetry of the BN: (a)
n-periods become more stable when ε = θ(0) > 0, (b) n-
periods and p-periods are equally unstable when ε = 0, and
(c) p-periods become more stable when ε < 0.

Figure 5 The bifurcation diagrams of the BN as the
amplitude of threshold level changes: (a) when ρo is exactly
at ρc, and (b) when ρo is slightly greater than ρc.  These two
bifurcation diagrams are reminiscent of the sigmoidal curve.



For the further discussion of the bistability of the BN,

we need to define the binary state of the BN. The BN is

considered to be in the negative state if it is firing in the

first half of the state space with respect to a modulus 1.

Likewise, it is considered to be in the positive state if it

is firing in the second half. The precise definition of the

binary state of the BN is given by

(3)

where t(n) is the last firing time of the BN before t.

For ease of illustration, we call the first half and the

second half of the state space as n-period and p-

period, respectively. Since the two periods are defined

with respect to a modulus 1, they will divide the time

axis into an alternating series of n-periods and p-

periods, as illustrated in Figure 4.

Pulse-Coupling via a Harmonic Oscillator

We have seen that the symmetry of the BN can be

broken by in introduction of threshold level oscillation

and its bistability can be controlled by the oscillation

amplitude. However, the input that a BN receives

from the presynaptic BNs is in the form of a spike

train. Apparently, we need to provide a linkage

between the spike train and the threshold level

oscillation. For this purpose, we propose that the

threshold level of the BN be modeled by the harmonic

oscillator that is subject to an impulsive input:

(4)

where , and Q is

the Q-factor of the harmonic oscillator. The spiky

input u(t) from the presynaptic BNs is driving the

harmonic oscillator. Note that the oscillator parameters

are carefully chosen so that the oscillation frequency is

1 when the oscillator is under-damped.

Figure 6 shows a small example network to illustrate

the operation of the proposed pulse-coupling scheme.

The solid lines between BNs represent excitatory

connections, while the dashed lines represent

inhibitory connections. Suppose that the BNs are

divided into two groups: three BNs firing in the n-

period and the other three BNs firing in the p-period.

The first temporal plot shows the expected state

evolution of one of the BNs in the first group. The

thick downward arrows represent the spike input from

the BNs in the same group, while the thick upward

arrows represent the spike input from the BNs in the

other group. These inputs together will induce

sinusoidal oscillation of the threshold level, as shown

in the plot, and the oscillation is in such a phase as to

reinforce the firing of the BN in the n-periods. The

second temporal plot shows the expected state

evolution of a BN in the second group. The situation

is similar to that of the first plot, but this time, the

resulting sinusoidal threshold level is in such phase as

to reinforce the firing of the BN in the p-periods. In

conclusion, the pulse-coupling scheme seems to

maintain the clustering of a network into such two

groups. Of course, as one can see in the figure, the
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Figure 6 A small example network to illustrate the
proposed pulse-coupling scheme: the upper three BNs are
in the n-period and the other three are in the p-period. The
solid lines between them represent excitatory connections,
while the dashed lines represent inhibitory connections.



two groups are determined by the configuration of the

excitatory and inhibitory connections.

Binary Associative Memory

A BNN-1 consists of I BNs that is governed by the

following equation:

(5)

The state variable xi(t) increases linearly until it

reaches the threshold level θ i(t) and then drops down

to the relaxation level ρ i( t ). All the BNs in the

network have the same relaxation level:

(6)

A spike train out of a BN can be represented by a

series of Dirac-delta functions:

(7)

where t i(t) is the n-th firing time of BN i. The

weighed sum of the spike trains from the pre-synaptic

BNs drives the threshold level of the BNs, so, Eq. (4)

now becomes

(8)

where d is a coefficient that controls the overall

coupling strength among the BNs. The coupling

weights ω ij are determined by the Hebbian rule as in

the case of the PCSMN-2:

(9)

where Pk={ξ k
i } , k=1,2, . . . ,K are the K training

patterns to be remembered by the network. There are

three global parameters to be determined: the

amplitude of the relaxation level oscillation ρo, the Q-

factor of the threshold level dynamics, and the

coupling coefficient d. See (25) for detailed discussions

on the determination of these parameters.

We carried out a series of simulations of a BNN-1

consisting of 64 BNs. In all the simulations, the same

weight matrix encoding 6 random binary patterns was

used. For different combinations of network

parameters, we repeated 1000 random recall trials in

order to investigate the recall characteristics of the

network. In each random recall trial, the network was

initialized with a random initial state and was allowed

to converge to a stable pattern. We counted the

number of correct recalls (recall of a stored pattern)

and the number of incorrect recalls (recall of a

spurious pattern). When the network was not

converging to a stable pattern for some time, the

network was reinitialized and given another chance to

converge to a stable pattern. The results are shown in

Table 1. For almost all the combination of the

parameters, our network outperformed the Hopfield

network (continuous-time). In particular, when

ρo=0.368, Q=2 and d=0.012, the network successfully

recalled a stored pattern without a single exception.

Figure 7 shows the time evolution of the network in

one of the correct recall cases. The top plot shows the

binary states of all the BNs in the network. The

ω ξ ξij i
k

k

K

j
k=

=
∑

1

d
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Figure 7 The time evolution of the BNN-1, in one of the
correct recall trials: (top) the transition pattern of the binary
state variables si (n) shown in a black-and-white raster plot,
where black represents -1, and white represents 1; (middle)
the trajectories of all the firing time series ti (n); (bottom) the
trend of the pseudo-energy function H(n).



negative state is represented in black, while the

positive state is represented in white. Around t=20, the

BNs start to form two groups, one with BNs firing in

the n-period and the other with BNs firing in the p-

period. Such clusters, in fact, exactly correspond to the

two groups of BNs that we pictured in Fig. 6. The

stabilization of the two groups, therefore, indicates the

completion of a recall process. Apparently, the

network is still exhibiting chaos, though it is not full-

blown. The bottom plot shows the trend of the

pseudo-energy function which is defined by

(10)

An important point to note in the trend of the

pseudo-energy function is that it is not always

decreasing, but is sometimes increasing to get out of a

spurious minimum.

It may be worth looking at what is going on inside

the network to convince ourselves of its proper

operation. Figure 8 shows the internal state of the first

6 BNs in the network during a recall process. The left

and right plots show the state of the BNs in the initial

phase and in the final phase of the recall process,

respectively. Notice the spontaneous development of

sinusoidal oscillation in the threshold level as the recall

process proceeds. Initially, the threshold level is flat or

H t w s t s tij i j
j

I

i

I

( ) ( ) ( )= −
==

∑∑
11
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Figure 8 Inside the BNN-1 during recall process: the plots
on the left shows the initial, transient behavior of the first 3
BNs while the plots on the right shows the steady-state
behavior of the same BNs after a recall process is
completed.

Table 1. The recall statistics of the BNN-1: the numbers in the table represent the number of correct recalls of the patterns
specified in the column headings.

ρο Q d P1
—
P1 P2

—
P2 P3

—
P3 P4

—
P4 P5

—
P5 P6

—
P6 Total

0.367 2.0 0.010 57 90 160 85 117 136 71 69 14 19 68 59 945

0.367 2.0 0.012 52 69 121 85 103 117 138 150 20 22 72 39 988

0.367 20. 0.014 42 74 124 78 105 110 152 157 28 20 57 45 992

0.367 2.5 0.010 38 68 95 51 87 105 163 173 23 30 46 32 911

0.367 2.5 0.012 40 64 104 69 82 94 156 182 30 20 42 29 912

0.367 2.5 0.014 48 67 116 64 93 104 121 139 23 19 46 43 883

0.367 3.0 0.010 34 62 102 42 87 87 124 126 28 24 41 30 787

0.367 3.0 0.012 46 64 104 48 82 91 77 86 28 19 40 31 716

0.367 3.0 0.014 39 64 106 56 93 94 23 17 26 20 38 35 611

0.368 2.0 0.010 58 102 183 116 138 159 47 35 12 8 83 50 991

0.368 2.0 0.012 55 87 152 79 110 130 114 107 21 17 73 55 1000

0.368 2.0 0.014 46 78 143 82 108 127 134 142 22 17 53 46 998

0.368 2.5 0.010 38 64 108 66 96 109 172 181 19 19 51 35 958

0.368 2.5 0.012 34 68 109 59 91 101 163 190 28 19 45 34 941

0.368 2.5 0.014 53 74 124 69 98 107 114 135 24 26 49 40 913

0.368 3.0 0.010 36 69 93 46 92 94 142 162 30 13 42 34 853

0.368 3.0 0.012 44 62 104 54 86 96 87 116 27 19 43 33 771

0.368 3.0 0.014 40 71 98 61 92 93 20 22 23 17 41 35 613



random, so the BNs have a chance to switch between

the n-period and the p-period freely. As the sinusoidal

oscillation develops, the BNs are forced to choose one

of the two periods, and in a phase-locked manner.

THE BIFURCATING NEURON NETWORK 2

The BNN-2 is an analog associative memory that can

store multiple analog patterns in the time delays of the

synapses connecting BNs. In the BNN-2, the firings of

all the BNs in the network are phase-locked to the

relaxation level oscillation, which is common to all the

BNs. Therefore, when the buildup rates of the internal

potentials of all the BNs are identical, the firings of all

the BNs will be synchronized. An interesting

observation is that the firing phase of a BN with

respect to the relaxation level oscillation has a

proportional relationship with the buildup rate of its

internal potential. If an external stimulus representing a

spatial pattern affects the buildup rates of the internal

potentials of the BNs, the input pattern will be

reproduced in the spatial firing-phase pattern of the

BNs. In short, the BNs are performing amplitude-to-

phase transformation. The amplitude-to-phase

transformation function of the BN suggested the

possibility of building an analog associative memory

out of a BN network. After a firing-phase pattern is

formed, inter-BN connections, which induce

perturbations in the threshold levels of postsynaptic

BNs, can be added to maintain the firing-phase

pattern. The firing-phase pattern now forms an

attractor of the network, one which has a large basin

of attraction.

The BNN-2 has a unique feature that has seldom

been exhibited in other integrate-and-fire neuron

networks: its memory is dependent on the oscillation

frequency of the relaxation level of the BNs. For

instance, suppose that a set of patterns is remembered

by the network when the relaxation level oscillation

frequency is 40Hz. These patterns can only be recalled

when the relaxation level oscillation is at 40Hz and

cannot be recalled when the frequency is changed,

e.g., to 50Hz. After the frequency change, the network

can accept new patterns, which can only be recalled

when the relaxation level oscillation is at 50Hz. An

interesting observation is that the two sets of patterns

recorded at different frequencies do not interfere with

each other. Such characteristics of the BNN-2’s

memory are reminiscent of volume holography. The

BNN-2 can store multiple pages of memory, and each

page can be activated by the tuning of the relaxation

level frequency.

Amplitude-to-Phase Transformation of the BN

The following set of equations defines the BN:

(11)

where xi is the internal potential of the neuron

while i is the index of the neuron. Note that the sign

of the relaxation oscillation ρ(t) is different from the

case of the BNN-1. This change is only for the ease of

representation and does not change the dynamics of

the BN. The firing time of an isolated BN, t i(n) ,

satisfies the following recursion:

(12)

Figure 9 shows the bifurcation diagrams of the firing

time ti(n)(mod1) of a BN as the bifurcation parameter

ci ranges from 0.5 to 1.5. In the period-1 window of

the bifurcation diagrams, which are centered around

the point ci = 1, the curve formed by fixed points are

given by the following equation:

(13)

If we let ci= f+ui, this becomes

(14)

When ui = 0, t *
i becomes 0. This means that the BN

fires exactly at the beginning of the sinusoidal cycle of
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the relaxation level. As ui increases, however, a

“phase-lead”develops: the spiking of the BN starts to

lead the beginning of the sinusoidal cycle. On the

other hand, if ui decreases, a “phase-lag”develops:

the spiking of the BN starts to lag behind the

beginning of the sinusoidal cycle. In short, the BN is

converting an amplitude input to a phase shift in its

output spike. Figure 10 illustrates what the amplitude-

to-phase transformation implies when it comes to a

network of BNs. Since all the BNs in the network are

phase-locked to the sinusoidal oscillation of the

relaxation level and will respond to the analog input

with a proportional shift in the firing time, we can

expect the reproduction of the input pattern in the

firing pattern of the BNs as shown in the raster plot on

the right side. This figure reminded us of a similar

figure that appears in Hopfield (26). He also suggested

that a spiking neuron can convert an analog input to a

phase shift when it is influenced by an oscillatory

drive. It is interesting to see that we arrived at

seemingly the same result as his, despite the apparent

difference between his neuron model and the BN, our

neuron model. However, the detailed conversion

characteristics of the BN is difference from that of his

model neuron. For instance, the BN performs an

almost linear conversion while his model performs a

nonlinear conversion, e.g., a logarithmic conversion

under a certain condition. Therefore, we would not be

able to use the BN to explain the logarithmic intensity

transformation of the visual system. Note, however,

that linear conversion is better than any other type of

conversion, as far as an associative memory is

concerned, since it can transfer information with the

minimal loss in the presence of noise.

Pulse-Coupling for BNN-2

To begin with, we need to define a coupling

mechanism to link BNs. As shown in the previous

section, the BN has the capability of amplitude-to-

phase transformation of a perturbation u i in the

buildup rate ci to the firing time of its output spike.

Therefore, we will use ui as an input port: in other

words, we will use ui to denote an external input. The

application of an input will induce a firing time pattern

in the network, but the pattern will fade away as soon

as the input is removed; the network needs

interconnections between BNs to maintain an induced

firing-time pattern. To this end, we decided to use a

threshold coupling :

(15)θ δi it t( ) ( )== −−1
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Figure 10 Amplitude-to-phase transformation by BNs: the
bars on the left represent inputs to the BNs, and the short,
thick lines on the right show the firing times of the BNs.

Figure 9 The bifurcation diagrams of the BN with ci as the
bifurcation parameter: the firing time of the BN is
approximately in a linear relation with the bifurcation
parameter ci in the period-1 window centered around ci=1:f =
1 and ρo = 2



where δ i(t) denotes a perturbation in the threshold

level induced by inputs from presynaptic BNs. Since

the purpose of the threshold coupling is to maintain

an induced firing-time pattern, the coupling should

have a short time constant so that it is capable of fine

time resolution. A simple but effective type of

coupling we chose is given by the following first order

equation:

(16)

where β determines the time constant of the

restoring dynamics of the threshold level, u f
i( t )

represents the network input, i.e., the input from the

presynaptic BNs, and uf
i(t) is a constant that controls

the overall coupling strength of the BNs. The input  is

the weighted sum of the delayed spike trains from the

presynaptic BNs:

(17)

where the variable yi(t) represents the output of BN

and can be approximated by a series of Dirac-delta

functions, each of which represents a spike in the

spike train:

(18)

where ti(n) is the n-th firing time of BN i, and Ni is

the ordinal number of the latest firing of BN i. A

synaptic connection from BN j to BN i is characterized

by the two quantities, wk
ij and τk

ij: the first represents

the strength of the connection, and the second

represents the associated time delay. In the current

network design, the weight matrix wk
ij is either 1 or 0,

only indicating the existence of connection, while the

delay matrix τk
ij can take any real number centered

around the average firing period of the BNs for the

reason that will soon become clear. The superscript

signifies the possibility of repeated connections

between a pair of BNs, and it, as it will turn out, is the

number of analog patterns to be remembered by the

network.

The relaxation level of the BN is subject to a

sinusoidal oscillation ρ(t). This relaxation levels of all

the BNs in the network are the same. Hereafter, we

will call ρ(t) a “driving signal”and, accordingly, ρo

and f will be called a “driving amplitude”and a

“driving frequency”, respectively. 

A Thought Experiment

Figure 11 illustrates the thought experiment which

led us to a possible mechanism to realize an analog 

associative memory in the BNN-2. The thought

experiment is using a simple example network of two

BNs. A step-by-step explanation of the experiment

follows:

䤎Initially, no inputs are provided to the BNs.

According to Eq. (14), both BNs will be firing

exactly at the beginning of the sinusoidal cycle of

the driving signal

䤎A positive external input is provided to BN 2.

According to Eq. (14), the spiking of BN 2 will

lead that of BN 1 by a small amount. This phase-

lead will persist as long as the input is

maintained.

䤎Two time-delayed connections are added: one

from BN 1 to BN 2 and the other from BN 2 to

BN 1. The lengths of the time delays are

determined such that the situation may look as if

the firings of both BNs are triggered by each

other.

䤎The input to BN 2 is removed. What will happen

now? We expect that the phase-lead of BN2

which was induced by the input will now be

maintained by the time-delayed connections.

This experiment suggests a way to embed a

memory of a pattern in the BN network. Suppose that

the network already contains many connections with a

spread of time delays, but of negligibly small

strengths. Apply a training pattern to the network. It

will develop a phase-lead pattern in the firings of the

BNs. While the phase-lead pattern is maintained, we

let each BN strengthen those incoming connections
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that deliver a spike from other BNs at the exact

moment it fires. The phrase, “strengthen those

incoming connections that deliver a spike from other

BNs at the exact moment it fires.”is stating exactly the

principle of an online Hebbian training (27).

Analog Associative Memory

Consider a BN network where BNs are arranged in

an L×L planar configuration (I = L2). Each BN is

connected to its neighbors that are within the

Hemming distance rc (inclusive). Suppose that the

pixel values of a training pattern ξk
i are scaled properly

and are applied to the network, i.e., ui = γfροξk
i, where

γ<1 is a positive scaling factor, and f and ρο are the

frequency and amplitude of the sinusoidal driving

signal. The firing times of the BNs are given by Eq.

(14), which, when the input ui is given as above,

becomes

(19)

Therefore, from the thought experiment in the

previous section, the required time delay of the

connection from BN j to BN i for the network to

maintain the induced phase-lead pattern is given by

(20)

where 1/f is added to t *
i−t *

j to keep the time delay

τk
ij positive.

Preliminary numerical experiments showed that the

behavior of the network is critically dependent on the

values of the following parameters: f, t ρο, γ, and β.

As a matter of fact, the driving frequency f can be

chosen to be 1, without loss of generality, by a proper

normalization of the time variable. On the other hand,

the other parameters should be carefully determined

for the optimal performance of the network. See (28)

for detailed discussion on the way to determine these

parameters.

In order to investigate the recall characteristics of the

BNN-2, we carried out a series of computer

simulations. In the simulations that follow, we

assumed a network of 64 BNs (I = 64) arranged in 8×

8 planar configuration (L = 8).
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Figure 11 A thought experiment: a network of two BNs illustrates a possible mechanism to realize an analog associative
memory using the amplitude-phase transformation characteristics of the BN.

(a) (a)

(a) (a)



The purpose of the first simulation is to test if the

BN network can remember multiple patterns

simultaneously, i.e., the first four patterns in Fig. 12.

All the required connections for these patterns are

added to the network before the simulation starts. The

radius of connection rc is chosen to be 3, which gives

M = 48. The other network parameters are chosen as

follows: f = 1, ρo = 0.1, γ = 0.5, β = 200, and d =
0.0013. Simulation results are shown in Fig. 13.

䤎At t = 0, the network is initialized with a random

state, i.e., the internal potential of the BNs are

initialized with random numbers.

䤎At t = 50, the first training pattern ξ1
i is applied to

the network. At t = 75, the input is removed.

䤎The above two steps are repeated for the

remaining training patterns.

䤎At t = 250, a random pattern, which is not one of

the four training patterns, is applied to the network as

an input.

䤎At t = 275, the input is removed.

Figure 13 contains two types of plots: a raster plot

and a line plot. The raster plot shows the lead in the

firing time of each BN which is defined by

(21)

where ti(t) is the time of the last firing of BN i

before t. The line plot shows the correlation between

the phase-lead pattern of the network and one of the

four training patterns during the simulation:

(22)

where and . We can 

observe a marked difference in the responses of the

network to a known pattern and an unknown pattern.

A phase-lead pattern induced by a known pattern

persists after the removal of the input until a new

input is applied. The response of the network is

completely different for an unknown pattern: the

network forgets the pattern as soon as the input is

removed.

SSiimmuullaattiioonn 22:: llaarrggee bbaassiinnss ooff aattttrraaccttiioonn??

Simulation 1 demonstrated the basic memory

capability of the BNN-2. However, this alone is not

sufficient to make the BNN-2 a useful associative

memory since an associative memory should be able

to recognize a pattern which is known but is distorted

by noise. Also, the entire input pattern sometimes may

not be available, and an associative memory is

required to complete the entire pattern from a part of
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Figure 12 Training patterns used in the simulations of the
BNN-2: pixel values are represented in grayscale: black
represents 0, and white represents 1.

Figure 13 Simulation 1: (top) the time evolution pattern of
the BNN-2 shown in a gray-scale raster plot, where black
represents a firing-time lead of 0.05, and white represents a
firing-time lag of 0.05, and (bottom) the change of the
correlation xk (t) in time. 



it. In terms of nonlinear dynamics, this problem

reduced to that of the size of a basin of attraction: we

need to examine how large are the basins of attraction

associated with the attractors. The choice of the

network parameter values used in this simulation is as

follows: rc = 3, f = 1, ρo = 0.1, γ = 0.5, β = 300, and d =
0.0025.

We prepared corrupted versions of the first four

training patterns, which was shown in Fig. 12, for this

simulation.

(23)

The first half of each corrupted version is the same

as that of the corresponding original pattern, and the

second half is filled with zeros. All the connections

with the required time delays for the four original

training patterns are established in advance.

䤎At t = 0, the corrupted version of the first training
pattern is applied to the network as an input. Then,

the network is allowed to run until t = 50 so that it

can reconstruct the whole pattern.

䤎The above step is repeated for the other corrupted

training patterns: the second at t = 50, the third at t =
100, and the fourth at t = 150.

Simulation results are shown in Fig. 14. We can see

an apparent visual difference in the pattern of the

network response to the inputs in the first and the

second half of the network. A longer transient period

in the second half of the network indicates the

network’s effort to reconstruct the missing part in the

input patterns. When β = 200, the network could

reconstruct the missing part successfully for the first,

third and fourth training patterns but not for the

second pattern. To obtain a better performance of the

network, we had to test with many other combinations

of the network parameters, and the result shown in

Fig. 14 is one of the outcomes: the network is now

successful for all of the training patterns. It seemed

that the network tends to perform better when the

parameter β is larger. However, the network model

will depart further from biological reality if the

parameter β becomes too large.

SSiimmuullaattiioonn 33:: vvoolluummee--hhoollooggrraapphhiicc mmeemmoorryy 11

According to Eq. (20), the time delays associated

with the connections required to store a pattern in the

BNN-2 are dependent on the driving frequency f. This

means that the network’s recall of a stored pattern is

only possible when the same driving signal that was

present at the time of training is present. This situation

is reminiscent of volume holography (29). For a

volume hologram to reconstruct a recorded image, it is

necessary that a reference beam should be supplied

exactly at the same angle as it was in the recording

step. In fact, this sensitivity to the angle of the

reference beam enables volume holography to store

multiple patterns in a single refractive crystal. It

appears that the driving frequency f of the BNN-2

plays the role of the angle of a reference beam in

volume holography. Therefore, the question which we
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Figure 14 Simulation 2: (top) the time evolution pattern of
the BNN-2 shown in a gray-scale raster plot, where black
represents a firing-time lead of 0.05, and white represents a
firing-time lag of 0.05, and (bottom) the change of the
correlation xk (t) in time.



are about to answer in the simulation is this: can the

BNN-2 store different patterns at different driving

frequencies without causing interference among the

patterns? The values of the network parameters used

in this simulation are as follows: rc = 3, f = 1, ρo = 0.1, γ
= 0.5, β = 300, and d = 0.003.

The results are shown in Fig. 15. The time-delayed

connections for the first four training patterns shown in

Fig. 12 are added to the network in advance. In doing

so, we used different driving frequencies for different

training patterns: f = 1, 1.02, 1.04 and 1.06 for the four

training patterns, respectively. At t = 0, the network is

randomized, i.e., the internal potentials of the BNs are

initialized with random numbers. While the simulation

is running, the frequency of the driving signal is

changed discontinuously in the following order: f = 1

at t = 0, f = 1.02 at t = 50, f = 1.04 at t = 100, and f =
1.06 at t = 150. Each of the four embedded patterns

shows up when the driving frequency is switched to

the frequency which was assumed when the pattern

was added to the network.

SSiimmuullaattiioonn 44:: vvoolluummee--hhoollooggrraapphhiicc mmeemmoorryy 22

This simulation is a slight variation of simulation 3.

In this simulation, we used all of the eight training

patterns shown in Fig. 12: the first four and the second

four training patterns added to the network assuming

driving frequencies of f = 1 and 1.02, respectively. We

designed this simulation in order to check if the two

memory spaces associated with the two different

driving frequencies are independent and do not

interfere. Simulation results are shown in Fig. 16.

䤎At t = 0, the network is initialized with a random

state, i.e., the internal potential of the BNs are

initialized with random numbers.

䤎At t = 50, the first training pattern is applied to the

network.

䤎At t = 75, the input is removed.

䤎The above two steps are repeated for the

remaining training patterns.
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Figure 15 Simulation 3: (top) the time evolution pattern of
the BNN-2 shown in a gray-scale raster plot, where black
represents a firing-time lead of 0.05, and white represents a
firing-time lag of 0.05, and (bottom) the change of the
correlation xk (t) in time.

Figure 16 Simulation 4: (top) the time evolution pattern of
the BNN-2 shown in a gray-scale raster plot, where black
represents a firing-time lead of 0.05, and white represents a
firing-time lag of 0.05, and (bottom) the change of the
correlation xk (t) in time.



䤎At t = 250, the fifth pattern, which is one of the

four training patterns which were embedded in

the network assuming the driving frequency of

1.02, is applied to the network.

䤎At t = 275, the input is removed.

Throughout the simulation, the driving frequency

was kept constant at f = 1. Up to our expectation, the

network can not recognize the fifth pattern which was

added to the network assuming a different driving

frequency (f = 1.02). The network is treating the fifth

pattern in the same way as it did a random pattern in

simulation 1. This experimental result clearly

demonstrates the independence of the memory spaces

associated with different driving frequencies.

DISCUSSIONS

In the beginning, we pointed out that the three new

issues in neuroscience, namely, time coding, the role

of coherent activity, and the role of chaotic activity,

motivated the design of the BN networks. Now, based

on what we have observed in the BN networks, we

are tempted to talk back to biology despite the risk of

being purely hypothetical.

䤎The BNs in the networks can communicate with

each other, i.e., decode the information conveyed

by spike trains only because they have a common

time reference. This observation suggests that a

coherent activity may be a necessary condition, in

a network where time coding is used, for an

intensive information transaction among neurons.

䤎The BNN-1 suggests a possible role of chaos.

Chaos in the BNN-1 is a natural source of noise

that goes away after perception, and also allows a

network to have more symbols for expression.

Also, attractor merging crisis enables transition

between searching and perception more rapid

than an exponential convergence.

䤎In the BNN-2 the frequency of the sinusoidal

oscillation can be adjusted to put the network into

different independent modes. If we consider a

large network consisting of a number of

functionally independent sub-networks, we will be

able to selectively activate a certain function of the

network by “illuminating”the corresponding sub-

network with a sinusoidal signal. This scenario is

in fact reminiscent of the searchlight hypothesis of

Crick (13).

䤎In the BNN-1 and 2, the average firing rate of

every BN is always 1, before or after the

convergence of the network. If a real biological

neural network is operating in a fashion similar to

that of the BNNs, the measurement of the average

firing rate of neurons in the network will reveal

no sign of meaningful activity although the

network is indeed involved in an active

computing task.

䤎The BNN-1 is always operating in a chaotic state,

which means that the inter-spike intervals of the

individual BNs can never be constant. Softky and

Kock (30) reported high variability of the inter-

spike intervals in their analysis of data from the

cat and the primary visual cortex (V1) and extra-

striate cortex (MT) neurons. Their finding was

inconsistent with the neural networks that are

based on the original integrate-and-fire neuron

model (22), but are, apparently, in agreement with

the BNN-1.
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