
■ Incremental search reuses information from previ-
ous searches to find solutions to a series of similar
search problems potentially faster than is possible
by solving each search problem from scratch. This
is important because many AI systems have to
adapt their plans continuously to changes in (their
knowledge of) the world. In this article, we give an
overview of incremental search, focusing on LIFE-
LONG PLANNING A*, and outline some of its possible
applications in AI.

Overview

It is often important that searches be fast. AI
has developed several ways of speeding up
searches by trading off the search time and

the cost of the resulting path, which includes
using inadmissible heuristics (Pohl 1973, 1970)
and search with limited look ahead (Korf 1990;
Ishida and Korf 1991; Koenig 2001), which is
also called real-time or agent-centered search.
In this article, we discuss a different way of
speeding up searches, namely, incremental
search. Incremental search is a search technique
for continual planning (or, synonymously, re-
planning, plan reuse, and lifelong planning)
that reuses information from previous searches
to find solutions to a series of similar search
problems potentially faster than is possible by
solving each search problem from scratch. Dif-
ferent from other ways of speeding up search-
es, it can guarantee to find the shortest paths.
Notice that the terminology is unfortunately
somewhat problematic because the term incre-
mental search in computer science also refers to
both online search and search with limited
look ahead (Pemberton and Korf 1994).

Most of the research on search has studied
how to solve one-time search problems. How-
ever, many AI systems have to adapt their
plans continuously to changes in the world or

changes of their models of the world, for ex-
ample, because the actual situation turns out
to be slightly different from the one initially
assumed or because the situation changes over
time. In these cases, the original plan might no
longer apply or might no longer be good, and
one thus needs to replan for the new situation
(desJardins et al. 1999). Similarly, one needs to
solve a series of similar search problems if one
wants to perform a series of what-if analyses or
if the costs of planning operators, their precon-
ditions, or their effects change over time be-
cause they are learned or refined.

In these situations, most search algorithms
replan from scratch, that is, solve the new
search problem independently of the old ones.
However, this approach can be inefficient in
large domains with frequent changes and,
thus, limit the responsiveness of AI systems or
the number of what-if analyses that they can
perform. Fortunately, the changes to the
search problems are usually small. A robot, for
example, might have to replan when it detects
a previously unknown obstacle, a traffic rout-
ing system might have to replan when it learns
about a new traffic jam, and a decision support
system for marine oil spill containment might
have to replan when the wind direction
changes. This property suggests that a com-
plete recomputation of the best plan for the
new search problem is unnecessary because
some of the previous search results can be
reused, which is what incremental search does.

Incremental search solves dynamic shortest-
path problems, where shortest paths have to be
found repeatedly as the topology of a graph or
its edge costs change (Ramalingam and Reps
1996b). The idea of incremental search is old.
For example, an overview article about short-
est-path algorithms from 1984 already cites
several incremental search algorithms, includ-
ing several ones published in the late 1960s

Articles

SUMMER 2004 99

Incremental
Heuristic Search in AI

Sven Koenig, Maxim Likhachev, Yaxin Liu, and David Furcy

Copyright © 2004, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2004 / $2.00

Uninformed Incremental Search
We now discuss one particular way of solving
fully dynamic shortest-path problems. As an
example, we use route planning in known
eight-connected gridworlds with cells whose
traversability changes over time. They are ei-
ther traversable (with cost one) or untraversa-
ble. The route-planning problem is to repeatedly
find a shortest path between two given cells of
the gridworld, knowing both what the topolo-
gy of the gridworld is and which cells are cur-
rently traversable. It can be solved with con-
ventional search, such as breadth-first search,
by finding a shortest path every time some
edge costs change. Conventional search typi-
cally does not reuse information from previous
searches. The following example, however, il-
lustrates the potential advantage of reusing in-
formation from previous searches.

Consider the gridworlds shown in figure 1.
The original gridworld is shown in figure 1a,
and the changed gridworld is shown in figure
1b. Only two blockages have moved, resulting
in four cells with changed blockage status. The
figure shows the shortest paths in both cases
under the assumption that every move has cost
one. The shortest path changed because two
cells on the original shortest path became un-
traversable.

The length of a shortest path from the start
cell to a cell is called its start distance. Once the
start distances of all cells are known, one can eas-
ily trace back a shortest path from the start cell
to the goal cell by always greedily decreasing the
start distance, starting at the goal cell. The start
distances are shown in each traversable cell of
the original and changed gridworlds (figures 1a
and 1b). Those cells whose start distances in the
changed gridworld (figure 1b) are different from
the corresponding cells in the original grid-
world; they are shaded gray in figure 1b. Even
though large parts of the shortest path have
changed, less than a quarter of the start distances
have changed. Thus, in such cases, there is a po-
tential advantage to recalculating only those
start distances that have changed, which is an ar-
gument for caching the start distances rather
than the shortest path itself.

Caching the start distances is basically what
the incremental search algorithm DYNAMIC-
SWSF-FP (Ramalingam and Reps 1996a) does.1

DYNAMICSWSF-FP was originally developed in
the context of parsing theory and theoretical
computer science. It uses a clever way of iden-
tifying the start distances that have not
changed and recalculates only the ones that
have changed. Consequently, it performs best
in situations where only a small number of
start distances change.

(Deo and Pang 1984). Since then, additional
incremental search algorithms have been sug-
gested in the algorithms literature (Ausiello et
al. 1991; Even and Gazit 1985; Even and
Shiloach 1981; Feuerstein and Marchetti-Spac-
camela 1993; Franciosa, Frigioni, and Giaccio
2001; Frigioni, Marchetti-Spaccamela, and
Nanni 1996; Goto and Sangiovanni-Vincentel-
li 1978; Italiano 1988; Klein and Subramanian
1993; Lin and Chang 1990; Rohnert 1985; Spi-
ra and Pan 1975) and, to a much lesser degree,
the AI literature (Al-Ansari 2001; Edelkamp
1998). They differ in their assumptions, for ex-
ample, whether they solve single-source or all-
pairs shortest-path problems, which perfor-
mance measure they use, when they update
the shortest paths, which kinds of graph
topologies and edge costs they apply to, and
how the graph topology and edge costs are al-
lowed to change over time (Frigioni, Marchetti-
Spaccamela, and Nanni 1998). If arbitrary se-
quences of edge insertions, deletions, or weight
changes are allowed, then the dynamic short-
est-path problems are called fully dynamic
shortest-path problems (Frigioni, Marchetti-Spac-
camela, and Nanni 2000).

The idea of incremental search has also been
pursued in AI for problems other than path
finding. For example, a variety of algorithms
have been developed for solving constraint-sat-
isfaction problems (Dechter and Dechter 1988;
Verfaillie and Schiex 1994) or constraint logic
programming problems (Miguel and Shen
1999) where the constraints change over time.
In this article, however, we study incremental
search only in the context of dynamic shortest-
path problems, where it has not been studied
extensively in AI.

We believe that four achievements are neces-
sary to make incremental search more popular
in AI. First, one needs to devise more powerful
incremental search algorithms than those that
currently exist. Second, one needs to study
their properties more extensively, both analyt-
ically and experimentally, to understand their
strengths and limitations better. Third, one
needs to demonstrate that they apply to AI ap-
plications and compare them to other search
algorithms for these applications to demon-
strate that they indeed have advantages over
them. Finally, the AI community needs to be
made more aware of incremental search. This
article addresses the last issue so that more re-
searchers can address the first three. It describes
one particular incremental search algorithm
and its potential applications and then discuss-
es its potential advantages and limitations.

Articles

100 AI MAGAZINE

Consider the gridworld in figure 2 to under-
stand how it operates. The start cell is A3. As-
sume that one is given the values in the left
gridworld, and it is claimed that they are equal
to the correct start distances. There are at least
two different approaches to verify this proper-
ty. One approach is to perform a complete
search to find the start distances and compare
them to the given values. Another approach is
to check the definition of the start distances,
namely, that the value of the start cell is zero,
and the value of every other cell is equal to the
minimum over all neighboring cells of the val-

ue of the neighboring cell plus the cost of get-
ting from the neighboring cell to the cell in
question, which is indeed the case. For exam-
ple, the value of cell B1 should be the mini-
mum of the values of cells A0, A1, A2, and C1
plus one. Thus, the values are indeed equal to
the correct start distances. Both approaches
need about the same run time to confirm this
property. Now assume that cell D1 becomes
untraversable, as shown in the right gridworld
of figure 2, and thus, the costs of all edges into
the cell become infinity, and it is claimed that
the values in the cells remain equal to the cor-

Articles

SUMMER 2004 101

A. Original Eight-Connected Gridworld

1 98765432

1 987654321

2 987654322

3

4 131212127654

5 1312111175

6 131211108766

1312111098

11 1311991012

11 121210101012

Sstart

Sgoal

B. Changed Eight-Connected Gridworld

1 98765432

1 987654321

2 987654322

3

4 101011127654

5 111111115

6 121211108766

1312111098

8 13119889

9 129999

Sstart

Sgoal

7

9

Figure 1. Simple Gridworld.

Informed Incremental Search
One way of speeding up searches is to use in-
cremental search. Another way of speeding up
searches is to use heuristic search. The question
arises whether incremental and heuristic
search can be combined. Many of the start dis-
tances that have changed in the example in fig-
ure 1 are irrelevant for finding a shortest path
from the start cell to the goal cell and thus do
not need to be recalculated. Examples are the
cells in the lower left corner of the gridworld.
Thus, there is a potential advantage to using
heuristics to avoid having to recalculate irrele-
vant start distances.

To summarize, there are two different ways
to decrease the search effort of breadth-first
search for finding the start distances for the
changed gridworld (figure 1b):

First, incremental search algorithms, such as
DYNAMICSWSF-FP (Ramalingam and Reps
1996a), find shortest paths for series of similar
search problems potentially faster than is pos-
sible by solving each search problem from
scratch (complete search) because they do not
recompute those start distances that have not
changed.

Second, heuristic search algorithms, such as A*
(Nilsson 1971), use heuristic knowledge in the
form of approximations of the goal distances
to focus the search and find shortest paths for
search problems faster than uninformed search
because they do not compute those start dis-
tances that are irrelevant for finding a shortest
path from the start cell to the goal cell.

Consequently, we developed a search algo-
rithm that combines incremental and heuristic
search, namely, LPA* (LIFELONG PLANNING A*)
(Koenig and Likhachev 2002b). We call it life-
long planning in analogy to lifelong learning
(Thrun 1998) because it reuses information
from previous searches. LPA* repeatedly finds
shortest paths from a given start vertex to a giv-
en goal vertex on arbitrary known finite graphs
(not just gridworlds) whose edge costs increase
or decrease over time (which can also be used
to model edges or vertices that are added or
deleted). The pseudocode of the simplest ver-
sion of LPA* reduces to a version of A* that
breaks ties among vertices with the same f-val-
ue in favor of smaller g-values when used to
search from scratch and to DYNAMICSWSF-FP
when used with uninformed heuristics. In fact,
it differs from DYNAMICSWSF-FP only in the cal-
culation of the priorities for the vertices in the
priority queue (line {01} in the pseudocode of
figure 3). It is unoptimized and needs consis-
tent heuristics (Pearl 1985). We have also de-
veloped more sophisticated versions of LPA*
that are optimized (for example, recalculate the

rect start distances. Again, there are at least two
different approaches to verify this property.
One approach is again to perform a complete
search to find the start distances and compare
them to the given values. The second approach
is again to check that the value of the start cell
is zero and that the value of every other cell is
equal to the minimum over all neighboring
cells of the value of the neighboring cell plus
the cost of getting from the neighboring cell to
the cell in question. Because the values remain
unchanged, each cell continues to have this
property unless its neighbors have changed.
Thus, one needs to check only whether the
cells close to changes in the gridworld contin-
ue to have this property, that is, cells C1 and
E1. It turns out that cell C1 continues to have
this property, but cell E1 does not. Thus, not all
values are equal to the correct start distances
(which does not mean, of course, that all cells
but E1 have correct start distances). The second
approach now needs less run time than the
first one. Furthermore, the second approach
provides a starting point for replanning, name-
ly, cell E1, because one needs to work on the
cells that do not have this property, moving
outward from the starting point. The principle
behind the second approach is the main idea
behind DYNAMICSWSF-FP. It shares this idea
with other incremental search approaches, in-
cluding some that apply to constraint satisfac-
tion (Dechter and Dechter 1988).

Articles

102 AI MAGAZINE

4

2

1

3A

B

C

D

0 1 2 3

2

2

3

5 5

E

F

24

2

1

3A

B

C

D

0 1 2 3

2

2

3

5 5

E

F

4

3

0

2

1

4

66

5

01

34

45

66

Figure 2. An Example.

various values much more efficiently than the
simple version), can work with inadmissible
heuristics, and can break ties among vertices
with the same f-value in favor of larger g-val-
ues. These changes make LPA* more complex.

Replanning with LPA* can best be understood
as transforming the A* search tree of the old
search problem to the A* search tree of the new
search problem, which results in some compu-
tational overhead because parts of the old A*
search tree need to be undone. It also results in
computational savings because other parts of
the old A* search tree can be reused. The larger
the overlap between the old and new A* search
trees, the more efficient replanning with LPA* is
compared to using A* to create the new search
tree from scratch. For example, LPA* is likely
more efficient in situation 1a of figure 4 than
in situation 1b.2 Experimental results show
that LPA* is the more efficient, for example, the
less the graph has changed (see experiment 1)
and the closer the edges with changed cost are
to the goal of the search (see experiment 3).
The computational savings can dominate the
computational overhead, and LPA* then replans
faster than A*. In the worst case, however, no
search algorithm is more efficient than a com-
plete search from scratch (Nebel and Koehler
1995), and LPA* can be less efficient than A*,
which can happen if the overlap of the old and
new A* search trees is small.

The simplicity of LPA* allows us to prove a
number of properties about it, including its ter-
mination, correctness, efficiency in terms of
vertex expansions, and similarity to A*, which
makes it easy to understand, analyze, and ex-
tend, for example, to nondeterministic do-
mains (Likhachev and Koenig 2003). We can
prove, for example, that the first search of LPA*
expands the vertices in the same order as a ver-
sion of A* that breaks ties among vertices with
the same f-value in favor of smaller g-values.
LPA* expands every vertex at most twice and
does not expand many vertices at all because it
does not expand vertices whose values were al-
ready equal to their start distances (efficiency
as a result of incremental search) or whose pre-
vious and current f-values are larger than the f-
value of the goal vertex (efficiency as a result of
heuristic search). Details can be found in
Koenig, Likhachev, and Furcy (2004).

More information on incremental search in
general can be found in Frigioni et al. (2000),
and more information on LPA* can be found in
Koenig, Likhachev, and Furcy (2004) (this arti-
cle is an introductory version of it).

Experimental Evaluation
We now perform experiments in small grid-
worlds to better understand the advantages
and limitations of LPA* (Koenig, Likhachev, and
Furcy (2004). We compare an optimized ver-
sion of LPA* against a version of A* that breaks
ties among vertices with the same f-value in fa-
vor of vertices with larger g-values because do-
ing so tends to result in a smaller number of
vertex expansions than breaking ties in the op-
posite direction (although tie breaking turns
out not to make a big difference in our grid-
worlds). All priority queues were implemented
as binary heaps.3

We use four connected gridworlds with di-
rected edges between adjacent cells. We gener-
ate 100 gridworlds. The start and goal cells are

Articles

SUMMER 2004 103

S denotes the finite set of vertices of the graph. succ(s) ⊆ S denotes the set of successors
of vertex s ∈ S. Similarly, pred(s) ⊆ S denotes the set of predecessors of vertex s ∈ S.
0 < c(s, s′) ≤ ∞ denotes the cost of moving from vertex s to vertex s′ ∈ succ(s). LPA*
always determines a shortest path from a given start vertex sstart ∈ S to a given goal vertex
sgoal ∈ S, knowing both the topology of the graph and its current edge costs. The heuristics
need to be nonnegative and consistent.

LPA* maintains estimates g(s) and rhs(s) of the start distance of each vertex s. LPA* also
maintains a priority queue that contains exactly the vertices s with g(s) �= rhs(s). Their pri-
orities are pairs, the first component of which is similar to an f-value of A* and the second one of
which is similar to a g-value of A*. The priorities are compared to according to a lexicographic
ordering. For example, a priority [k1; k2] is less than or equal to a priority [k′

1; k′
2] iff either

k1 < k′
1 or (k1 = k′

1 and k2 ≤ k′
2). U.TopKey() returns the smallest priority of all vertices

in priority queue U . (If U is empty, then U.TopKey() returns [∞;∞].) U.Pop() deletes the
vertex with the smallest priority in priority queue U and returns the vertex. U.Insert(s, k) inserts
vertex s into priority queue U with priority k. Finally, U.Remove(s) removes vertex s from pri-
ority queueU .

procedure CalculateKey(s)
{01} return [min(g(s), rhs(s)) + h(s); min(g(s), rhs(s))];

procedure Initialize()
{02} U = ∅;
{03} for all s ∈ S rhs(s) = g(s) = ∞;
{04} rhs(sstart) = 0;
{05} U.Insert(sstart, [h(sstart); 0]);

procedure UpdateVertex(u)
{06} if (u �= sstart) rhs(u) = mins′∈pred(u)(g(s′) + c(s′, u));

{07} if (u ∈ U) U.Remove(u);
{08} if (g(u) �= rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
{09} while (U.TopKey()<̇CalculateKey(sgoal) OR rhs(sgoal) �= g(sgoal))
{10} u = U.Pop();
{11} if (g(u) > rhs(u))
{12} g(u) = rhs(u);
{13} for all s ∈ succ(u) UpdateVertex(s);
{14} else
{15} g(u) = ∞;
{16} for all s ∈ succ(u) ∪ {u} UpdateVertex(s);
procedure Main()
{17} Initialize();
{18} forever
{19} ComputeShortestPath();
{20} Wait for changes in edge costs;
{21} for all directed edges (u, v) with changed edge costs
{22} Update the edge cost c(u, v);
{23} UpdateVertex(v);

Figure 3. LIFELONG PLANNING A* (simple version).

to prefer LPA* over A*. For example, if this num-
ber is two, then LPA* solves one planning prob-
lem and two replanning problems together
faster than A*. Additional experiments are re-
ported in Koenig, Likhachev, and Furcy (2004).

Experiment 1
In the first experiment, the size of the grid-
worlds is 101 by 101. We change the number of
edges that get assigned random costs before
each planning episode. Table 1 shows our ex-
perimental results. The smaller the number of
edges that get assigned random costs, the less
the search space changes and the larger the ad-
vantage of LPA* in our experiments. The aver-
age run time of the first planning episode of
LPA* tends to be larger than that of A*, but the
average run time of the following planning
episodes tends to be so much smaller (if the
number of edges that get assigned random
costs is sufficiently small) that the number of
replanning episodes that are necessary for one
to prefer LPA* over A* is one.

Experiment 2
In the second experiment, the number of edges
that get assigned random costs before each
planning episode is 0.6 percent. We change the
size of the square gridworlds. Table 2 shows our
experimental results. The smaller the grid-
worlds, the larger the advantage of LPA* in our
experiments, although we were not able to pre-

drawn with uniform probability for each grid-
world. All edge costs are either one or two with
uniform probability. We then change each
gridworld 500 times in a row by selecting a giv-
en number of edges and reassigning them ran-
dom costs. We report the probability that the
cost of the shortest path changes to ensure that
the edge cost changes indeed change the short-
est path sufficiently often. A probability of 33.9
percent, for example, means that the cost of
the shortest path changes on average after 2.96
planning episodes. We use the Manhattan dis-
tances as heuristics for the cost of a shortest
path between two cells, that is, the sum of the
difference of their x- and y-coordinates. For
each experiment (tables 1, 2, and 3), we report
the run time (in milliseconds) averaged over all
first planning episodes (#1) and over all plan-
ning episodes (#2), run on a PENTIUM 1.7-mega-
hertz PC. We also report the speedup of LPA*
over A* in the long run (#3), that is, the ratio of
the run times of A* and LPA* averaged over all
planning episodes. The first search of LPA* tends
to be slower than that of A* because it expands
more states and needs more time for each state
expansion. During the subsequent searches,
however, LPA* often expands fewer states than
A* and is thus faster than A*. We therefore also
report the replanning episode after which the
average total run time of LPA* is smaller than
that of A* (#4), in other words, the number of
replanning episodes that are necessary for one

Articles

104 AI MAGAZINE

old search tree new search tree

1a 1b

2a 2b

Figure 4. Old and New Search Trees.

dict this effect. This insight is important because
it implies that LPA* does not scale well in our
gridworlds (although part of this effect could be
the result of the fact that more edges get as-
signed random costs as the size of the grid-
worlds increases; this time is included in the run
time averaged over all planning episodes). We,
therefore, devised the third experiment.

Experiment 3
In the third experiment, the number of edges
that get assigned random costs before each
planning episode is again 0.6 percent. We
change both what the size of the square grid-
worlds is and how close the edges that get as-
signed random costs are to the goal cell. Eighty
percent of these edges leave cells that are close
to the goal cell. Table 3 shows our experimen-
tal results. Now, the advantage of LPA* no

longer decreases with the size of the grid-
worlds. The closer the edge cost changes are to
the goal cell, the larger the advantage of LPA* is
in our experiments, as predicted earlier. This
insight is important because it suggests using
LPA* when most of the edge cost changes are
close to the goal cell. We use this property
when we apply LPA* to mobile robotics and
control (see later discussion).

Although these experiments give us some in-
sight into the behavior of LPA*, we need to im-
prove our understanding of when to prefer in-
cremental search over alternative search
algorithms and which incremental search algo-
rithm to use. The main criteria for choosing a
search algorithm are its memory consumption
and its run time.

With respect to memory, incremental search
needs memory for information from past

Articles

SUMMER 2004 105

edge
cost
changes

path cost
changes

#1 and #2 #1 #2 #3 #4

0.2% 3.0% 0.299 0.386 0.029 10.370� 1
0.4% 7.9% 0.336 0.419 0.067 5.033� 1
0.6% 13.0% 0.362 0.453 0.108 3.344� 1
0.8% 17.6% 0.406 0.499 0.156 2.603� 1
1.0% 20.5% 0.370 0.434 0.174 2.126� 1
1.2% 24.6% 0.413 0.476 0.222 1.858� 1
1.4% 28.7% 0.468 0.539 0.282 1.657� 1
1.6% 32.6% 0.500 0.563 0.332 1.507� 1
1.8% 32.1% 0.455 0.497 0.328 1.384� 1
2.0% 33.8% 0.394 0.433 0.315 1.249� 1

A* LPA*

Table 1. Experiment 1.

A* LPA*
maze size

path cost
changes #1 and #2 #1 #2 #3 #4

51 51 7.3% 0.077 0.098 0.015 5.032� 1
76 76 10.7% 0.201 0.258 0.050 3.987� 1
101 101 13.0% 0.345 0.437 0.104 3.315� 1
126 126 16.2% 0.690 0.789 0.220 3.128� 1
151 151 17.7% 0.933 1.013 0.322 2.900� 1
176 176 21.5% 1.553 1.608 0.564 2.753� 1
201 201 22.9% 1.840 1.898 0.682 2.696� 1

Table 2. Experiment 2.

struction set of the processor, the optimiza-
tions performed by the compiler, and the data
structures used for the priority queues; it is
thus hard to characterize. For example, when
the number of edges that get assigned random
costs was 0.2 percent in experiment 1, the
number of heap percolates of A* was 8213.04,
but the number of heap percolates of LPA* was
only 297.30. This result makes it difficult to de-
termine whether there is a benefit to incremen-
tal search and, if so, how to quantify it. For ex-
ample, one can decrease the speedup of LPA*
over A* by using buckets to implement the pri-
ority queues rather than heaps, even though
this approach is more complicated. We imple-
mented A* with buckets and a simple FIFO tie-
breaking strategy within buckets (which speeds
it up by more than a factor of two) but left the
implementation of LPA* unchanged. In this

searches. LPA*, for example, needs to remember
the previous search tree. This property of LPA*
tends not to be a problem for gridworlds, but
the search trees of other search problems are
often so large that they do not completely fit
into memory. In this case, it might be possible
to combine incremental search with memory-
limited search algorithms such as RBFS (Korf
1993) or SMA* (Russell 1992), but this work is
for the future.

With respect to run time, our experiments
have demonstrated that LPA* expands fewer
vertices than A*, for example, when only a few
edge costs change, and these edge costs are
close to the goal vertex. These situations need
to be characterized better. LPA* also needs more
time for each vertex expansion than A*. This
time disadvantage depends on low-level imple-
mentation and machine details, such as the in-

Articles

106 AI MAGAZINE

80% of edge cost changes are � 25 cells away from the goal

A* LPA*
maze size

path cost
changes #1 and #2 #1 #2 #3 #4

51 51 13.5% 0.084 0.115 0.014 6.165 1
76 76 23.9% 0.189 0.245 0.028 6.661 1
101 101 33.4% 0.295 0.375 0.048 6.184 1
126 126 42.5% 0.696 0.812 0.084 8.297 1
151 151 48.5% 0.886 0.964 0.114 7.808 1
176 176 55.7% 1.353 1.450 0.156 8.683 1
201 201 59.6% 1.676 1.733 0.202 8.305 1

80% of edge cost changes are � 50 cells away from the goal

A* LPA*
maze size

path cost
changes #1 and #2 #1 #2 #3 #4

51 51 8.6% 0.086 0.115 0.017 5.138 1
76 76 15.7% 0.190 0.247 0.039 4.822 1
101 101 23.2% 0.304 0.378 0.072 4.235 1
126 126 31.3% 0.702 0.812 0.130 5.398 1
151 151 36.2% 0.896 0.959 0.173 5.166 1
176 176 44.0% 1.372 1.458 0.242 5.664 1
201 201 48.3% 1.689 1.742 0.313 5.398 1

80% of edge cost changes are � 75 cells away from the goal

A* LPA*
maze size

path cost
changes #1 and #2 #1 #2 #3 #4

76 76 12.1% 0.196 0.250 0.047 4.206 1
101 101 17.5% 0.306 0.391 0.088 3.499 1
126 126 26.0% 0.703 0.818 0.175 4.012 1
151 151 28.8% 0.893 0.972 0.225 3.978 1
176 176 36.8% 1.370 1.438 0.319 4.301 1
201 201 40.1% 1.728 1.790 0.408 4.236 1

Table 3. Experiment 3.

case, LPA* needed more than one replanning
episode in experiment 1 to outperform A* if the
number of edges that got reassigned random
costs before each planning episode was less
than 1.0 percent and did not outperform A* at
all if the number of edges that got reassigned
random costs before each planning episode
was 1.0 percent or more. Therefore, we are only
willing to conclude from our experiments that
incremental heuristic search is a promising
technology that needs to be investigated fur-
ther. In general, the trade-off between the
number of vertex expansions and the time
needed for each vertex expansion might
benefit incremental search algorithms that are
less sophisticated than LPA* and, thus, expand
more vertices but with less time for each vertex
expansion. One might also be able to develop
incremental search algorithms that apply only
to special cases of graphs (such as gridworlds)
and, thus, are faster but not as versatile as LPA*.

Applications
Our gridworld experiments suggest that incre-
mental search can be beneficial for route plan-
ning in traffic or computer networks, where
the congestion and, thus, the optimal routes
change over time. These applications are simi-
lar to our gridworld experiments. However, a
variety of areas in AI could also potentially
benefit from incremental search. In the follow-
ing subsections, we discuss some of the possi-
ble applications, many (but not all) of which
involve gridworlds. We also discuss the current
state of the art, including opportunities for fu-
ture research on incremental search.

Symbolic Planning (HSP)
Symbolic planning is the most obvious appli-
cation of incremental search. Interestingly, in-
cremental search can be used not only to solve
a series of similar symbolic (STRIPS-style) plan-
ning problems but also single symbolic plan-
ning problems.

One-time planning: Heuristic search-based
planners solve symbolic planning problems.
They were introduced by McDermott (1996)
and Bonet, Loerincs, and Geffner (1997) and
have become very popular. In its default
configuration, HSP 2.0 (Bonet and Geffner
2000), for example, uses weighted A* searches
with inadmissible heuristics to perform for-
ward searches in the space of world states to
find a path from the start state to a goal state.
However, the calculation of the heuristics is
time consuming because HSP 2.0 calculates the
heuristic of each state that it encounters during
the search by solving a relaxed search problem.

Consequently, the calculation of the heuristics
comprises about 80 percent of its run time
(Bonet and Geffner 2001).

HSP 2.0 thus repeatedly solves relaxed search
problems as it calculates the heuristics. The re-
laxed search problems that it solves to find the
heuristics of two states are similar if the two
states are similar, and two states whose heuristics
it calculates consecutively are often similar be-
cause they are both children of the same parent
in the A* search tree. Thus, incremental search
can solve a relaxed search problem by reusing in-
formation from the calculation of the previous
relaxed search problem. Our PINCH (prioritized,
incremental heuristics calculation) algorithm
(Liu, Koenig, and Furcy 2002), for example, is
based on DYNAMICSWSF-FP and speeds up the
run time of HSP 2.0 by as much as 80 percent in
several domains, and in general, the amount of
savings grows with the size of the domains, al-
lowing HSP 2.0 to solve larger search problems
with the same limit on its run time and without
changing its heuristics or overall operation.

Continual planning: So far, we have de-
scribed how incremental search can solve sin-
gle symbolic planning problems. However,
planning researchers realized a long time ago
that one often does not need to solve just one
symbolic planning problem but, rather, a series
of similar symbolic planning problems. Exam-
ples of practical significance include the
aeromedical evacuation of injured people in
crisis situations (Kott, Saks, and Mercer 1999)
and air campaign planning (Myers 1999). Re-
planning is necessary in these cases, for exam-
ple, when a landing strip at an airfield becomes
unusable. Planning researchers have therefore
studied replanning and plan reuse. Replanning
attempts to retain as many plan steps of the
previous plan as possible. Plan reuse does not
have this requirement. (We do not make this
distinction and, thus, use the term replanning
throughout the text.) Examples include case-
based planning, planning by analogy, plan
adaptation, transformational planning, plan-
ning by solution replay, repair-based planning,
and learning search-control knowledge. These
search algorithms have been used as part of
systems such as CHEF (Hammond 1990),
GORDIUS (Simmons 1988), LS-ADJUST-PLAN

(Gerevini and Serina 2000), MRL (Koehler
1994), NOLIMIT (Veloso 1994), PLEXUS (Alterman
1988), PRIAR (Kambhampati and Hendler 1992),
and SPA (Hanks and Weld 1995).

HSP 2.0 with weight one and consistent
heuristics finds plans with minimal plan-exe-
cution cost. If HSP 2.0 solves a series of similar
symbolic planning problems, then it can use
LPA* instead of A* to replan faster, resulting in

Articles

SUMMER 2004 107

Goal-directed navigation in unknown ter-
rain: Planning with the free-space assumption
is a popular solution to the goal-directed navi-
gation problem where a mobile robot has to
move in initially unknown terrain to given goal
coordinates. For example, the characters in
popular combat games such as TOTAL ANNIHILA-
TION, AGE OF EMPIRES, and WARCRAFT have to move
autonomously in initially unknown terrain to
user-specified coordinates. Planning with the
free-space assumption always plans a shortest
path from its current coordinates to the goal co-
ordinates under the assumption that the un-
known terrain is traversable. When it observes
obstacles as it follows this path, it enters them
into its map and then repeats the procedure,
until it eventually reaches the goal coordinates,
or all paths to them are untraversable.

To implement this navigation strategy, the
robot needs to replan shortest paths whenever
it detects that its current path is untraversable.
Several ways of speeding up the searches have
been proposed in the literature (Barbehenn
and Hutchinson 1995; Ersson and Hu 2001;
Huiming et al. 2001; Podsedkowski et al. 2001;
Tao et al. 1997; Trovato 1990). FOCUSSED DYNAM-
IC A* (D*) (Stentz 1995) is probably the most
popular solution and has been extensively used
on real robots, such as outdoor high-mobility
multipurpose wheeled vehicles (HMMWVs)
(Hebert, McLachlan, and Chang 1999;
Matthies et al. 2000; Stentz and Hebert 1995;
Thayer et al. 2000), and studied theoretically
(Koenig, Tovey, and Smirnov 2003). We believe
that D* is the first truly incremental heuristic
search algorithm. It resulted in a new applica-
tion for incremental search and a major ad-
vance in robotics. LPA* and D* share similarities.
For example, we can combine LPA* with ideas
from D* to apply it to moving robots, resulting
in D* LITE (Koenig and Likhachev 2002a). D* LITE

and D* implement the same navigation strate-
gy and are about equally fast, but D* LITE is al-
gorithmically simpler and, thus, easy to under-
stand, analyze, and extend. Both search
algorithms search from the goal coordinates to-
ward the current coordinates of the robot. Be-
cause the robot usually observes obstacles close
to its current coordinates, the changes are close
to the goal of the search, which makes incre-
mental search efficient, as predicted earlier.

Mapping: Greedy mapping is a popular solu-
tion to the problem of mapping unknown ter-
rain (Koenig, Tovey, and Haliburton 2001;
Romero, Morales, and Sucar 2001; Thrun et al.
1998). The robot always plans a shortest path
from its current coordinates to a closest patch
of terrain with unknown traversability until
the terrain is mapped.

the SHERPA (speedy heuristic search-based) re-
planner (Koenig, Furcy, and Bauer 2002) for
consistent heuristics. A difference between
SHERPA and the other replanners described ear-
lier is that SHERPA not only remembers the pre-
vious plans but also remembers the previous
plan-construction processes. Thus, it has more
information available for replanning than even
PRIAR, which stores plans together with expla-
nations of their correctness, or NOLIMIT, which
stores plans together with substantial descrip-
tions of the decisions that resulted in the solu-
tion. Another difference between SHERPA and
the other replanners is that its plan-execution
cost is as good as the plan-execution cost
achieved by search from scratch. Thus, incre-
mental search can be used for plan reuse if the
plan-execution cost of the resulting plan is im-
portant, but its similarity to the previous plans
is not.

Inadmissible heuristics allow HSP 2.0 to solve
search problems in large state spaces by trading
off run time and the plan-execution cost of the
resulting plan. SHERPA uses LPA* with consistent
heuristics. Although we have extended LPA* to
use inadmissible heuristics and still guarantee
that it expands every vertex at most twice, it
turns out to be difficult to make incremental
search more efficient than search from scratch
with the same inadmissible heuristics, although
we have had success in special cases. This diffi-
culty can be explained as follows: The larger the
heuristics are, the narrower the A* search tree
and, thus, the more efficient A* is. However, the
narrower the A* search tree, the more likely it is
that the overlap between the old and new A*
search trees is small and, thus, the less efficient
LPA* is. For example, situations 2a and 2b in fig-
ure 4 correspond to situations 1a and 1b respec-
tively, except that the old and new search trees
are narrower and, thus, overlap less.

Mobile Robotics and Games
(Path Planning)
Mobile robots often have to replan quickly as
the world or their knowledge of it changes. Ex-
amples include both physical robots and com-
puter-controlled robots (or, more generally,
computer-controlled characters) in computer
games. Efficient replanning is especially impor-
tant for computer games because they often
simulate a large number of characters, and
their other software components, such as the
graphics generation, already place a high de-
mand on the processor. In the following para-
graphs, we discuss two cases where the knowl-
edge of a robot changes because its sensors
acquire more information about the initially
unknown terrain as it moves around.

Articles

108 AI MAGAZINE

To implement this navigation strategy, the
robot needs to replan shortest paths whenever
it observes new obstacles. Both D* and D* LITE

can be used unchanged to implement greedy
mapping, although their advantage over A* is
much smaller for mapping than for goal-direct-
ed navigation in unknown terrain (Likhachev
and Koenig 2002).

Machine Learning
(Reinforcement Learning)
Reinforcement learning is learning from rewards
and penalties that can be delayed (Kaelbling,
Littman, and Moore 1996; Sutton and Barto
1998). Reinforcement learning algorithms,
such as Q-LEARNING (Watkins and Dayan 1992)
or online versions of value iteration (Barto,
Bradtke, and Singh 1995), often use dynamic
programming to update state or state-action
values and are then similar to real-time search
(Ishida and Korf 1991; Koenig 2001; Korf
1990). The order of the value updates deter-
mines how fast they can propagate informa-
tion through the state space, which has a sub-
stantial effect on their efficiency. The DYNA-Q

environment (Sutton and Barto 1998) has been
used by various researchers to study ways of
making reinforcement learning more efficient
by ordering their value updates. PRIORITIZED

SWEEPING (Moore and Atkeson 1993) and QUEUE-
DYNA (Peng and Williams 1993) are, for exam-
ple, reinforcement learning algorithms that re-
sulted from this research. They concentrate the
value updates on those states whose values
they change most.

Incremental search can order the value up-
dates in an even more systematic way and uses
concepts related to concepts from reinforce-
ment learning. For example, LPA* performs dy-
namic programming and implicitly uses the
Bellman (1957) equations. It is currently un-
clear how incremental search can be applied to
minimizing the expected (discounted) plan-ex-
ecution cost in nondeterministic domains, the
typical objective of reinforcement learning.
However, we have extended LPA* from mini-
mizing the plan-execution cost in determinis-
tic domains to minimizing the worst-case plan-
execution cost in nondeterministic domains,
resulting in MINIMAX LPA* (Likhachev and
Koenig 2003), which we believe to be the first
incremental heuristic minimax search algo-
rithm. It applies to goal-directed reinforcement
learning for minimizing the worst-case plan-
execution cost. Although this is the only appli-
cation of incremental search to reinforcement
learning that has been identified to date, it sug-
gests that ideas from incremental search can
potentially be used to reduce the number of

values that reinforcement learning algorithms
need to update.

Control (PARTI-GAME Algorithm)
State spaces of control problems are often con-
tinuous and sometimes high dimensional. The
PARTI-GAME algorithm (Moore and Atkeson 1995)
finds control policies that move an agent in
such domains from given start coordinates to
given goal coordinates. It is popular because it
is simple and efficient and applies to a broad
range of control problems such as path plan-
ning for mobile robots and robot arms (Al-
Ansari and Williams 1999; Araujo and de
Almeida 1998, 1997; Kollmann et al. 1997). To
solve these problems, one can first discretize the
domains and then use conventional search to
find plans that move the agent from its current
coordinates to the goal coordinates. However,
uniform discretizations can prevent one from
finding a plan if they are too coarse grained (for
example, because the resolution prevents one
from noticing small gaps between obstacles)
and result in large state spaces that cannot be
searched efficiently if they are too fine grained.
The PARTI-GAME algorithm solves this dilemma
by starting with a coarse discretization and
refines it during execution only when and
where it is needed (for example, around obsta-
cles), resulting in a nonuniform discretization.
To implement the PARTI-GAME algorithm, the
agent needs to find a plan with minimal worst-
case plan-execution cost whenever it has
refined its model of the domain. Several ways of
speeding up the searches with incremental
search have been proposed in the literature. Al-
Ansari (2001), for example, proposed an unin-
formed incremental search algorithm that re-
stores the priority queue of a minimax search
algorithm (similar to Dijkstra’s algorithm) to
the vertices it had immediately before the
changed edge costs made it behave differently,
and we proposed a combination of MINIMAX LPA*
and D* LITE (Likhachev and Koenig 2003).

Conclusions
Incremental search reuses information from
previous searches to find solutions to a series of
similar search problems potentially faster than
is possible by solving each search problem
from scratch. Although incremental search is
currently not used much in AI, this article
demonstrated that there are AI applications
that might benefit from incremental search. It
also demonstrated that we need to improve our
understanding of incremental search, includ-
ing when to prefer incremental search over al-
ternative search algorithms and which incre-

Articles

SUMMER 2004 109

College of Computer Science, Northeastern Universi-
ty.

Al-Ansari, M., and Williams, R. 1999. Robust, Effi-
cient, Globally Optimized Reinforcement Learning
with the PARTI-GAME Algorithm. In Advances in Neural
Information Processing Systems, Volume 11, 961–967.
Cambridge, Mass.: MIT Press.

Alterman, R. 1988. Adaptive Planning. Cognitive Sci-
ence 12(3): 393–421.

Araujo, R., and de Almeida, A. 1998. Map Building
Using Fuzzy Art and Learning to Navigate a Mobile
Robot on an Unknown World. In Proceedings of the
International Conference on Robotics and Automa-
tion, Volume 3, 2554–2559. Washington, D.C.: IEEE
Computer Society.

Araujo, R., and de Almeida, A. 1997. Sensor-Based
Learning of Environment Model and Path Planning
with a Nomad 200 Mobile Robot. In Proceedings of
the International Conference on Intelligent Robots
and Systems, Volume 2, 539–544. Washington, D.C.:
IEEE Computer Society.

Ausiello, G.; Italiano, G.; Marchetti-Spaccamela, A.;
and Nanni, U. 1991. Incremental Algorithms for
Minimal Length Paths. Journal of Algorithms 12(4):
615–638.

Barbehenn, M., and Hutchinson, S. 1995. Efficient
Search and Hierarchical Motion Planning by Dynam-
ically Maintaining Single-Source Shortest Paths Trees.
IEEE Transactions on Robotics and Automation 11(2):
198–214.

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artifi-
cial Intelligence 73(1): 81–138.

Bellman, R. 1957. Dynamic Programming. Princeton,
N.J.: Princeton University Press.

Bonet, B., and Geffner, H. 2001. Planning as Heuris-
tic Search. Artificial Intelligence 129(1): 5–33.

Bonet, B., and Geffner, H. 2000. HEURISTIC SEARCH PLAN-
NER 2.0. AI Magazine 22(3): 77–80.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A Ro-
bust and Fast Action Selection Mechanism. In Pro-
ceedings of the Fourteenth National Conference on
Artificial Intelligence, 714–719. Menlo Park, Calif.:
American Association for Artficial Intelligence.

Dechter, R., and Dechter, A. 1988. Belief Mainte-
nance in Dynamic Constraint Networks. In Proceed-
ings of the Seventh National Conference on Artificial
Intelligence, 37–42. Menlo Park, Calif.: American As-
sociation for Artificial Intelligence.

Deo, N., and Pang, C. 1984. Shortest-Path Algo-
rithms: Taxonomy and Annotation. Networks
14:275–323.

desJardins, M.; Durfee, E.; Ortiz, C.; and Wolverton,
M. 1999. A Survey of Research in Distributed, Con-
tinual Planning. AI Magazine 20(4): 13–22.

Edelkamp, S. 1998. Updating Shortest Paths. In Pro-
ceedings of the Thirteenth European Conference on Arti-
ficial Intelligence, 655–659. Chichester, U.K.: Wiley.

Ersson, T., and Hu, X. 2001. Path Planning and Nav-
igation of Mobile Robots in Unknown Environ-
ments. In Proceedings of the International Confer-
ence on Intelligent Robots and Systems, 858–864.

Articles

110 AI MAGAZINE

mental search algorithm to use. For example,
the search spaces of incremental search meth-
ods (for example, for computer games) are of-
ten small, and thus, their scaling properties are
less important than implementation and ma-
chine details. At the same time, it is difficult to
compare them using proxies, such as the num-
ber of vertex expansions, if they perform very
different basic operations. We therefore suggest
that AI researchers study incremental search in
more depth in the coming years to understand
it better; develop new algorithms; evaluate its
potential for real-world applications; and in
general, determine whether incremental search
is an important technique in the tool box of AI.

Acknowledgments
This research was performed when the authors
were at Georgia Institute of Technology.
Thanks to Peter Yap, Rob Holte, and Jonathan
Schaeffer for interesting insights into the be-
havior of LPA*. Thanks also to Anthony Stentz
and Craig Tovey for helpful discussions and to
Colin Bauer for implementing some of our
ideas. The Intelligent Decision-Making Group
is partly supported by National Science Foun-
dation awards to Sven Koenig under contracts
IIS-9984827, IIS-0098807, and ITR/AP-
0113881. Yaxin Liu was supported by an IBM
Ph.D. fellowship. The views and conclusions
contained in this article are those of the au-
thors and should not be interpreted as repre-
senting the official policies, either expressed or
implied, of the sponsoring organizations, agen-
cies, companies, or the U.S. government.

Notes
1. DYNAMICSWSF-FP, as originally stated, searches
from the goal vertex to all other vertices and, thus,
maintains estimates of the goal distances rather than
the start distances. We, however, use it to search from
the start vertex to all other vertices. Also, to calculate
a shortest path from the start vertex to the goal ver-
tex, not all distances need to be known. To make DY-
NAMICSWSF-FP more efficient, we changed its termi-
nation condition so that it stops immediately after it
has found a shortest path from the start vertex to the
goal vertex.

2. To be more precise, it is not only important that the
trees are similar, but most start distances of its nodes
have to be the same as well. Thus, it is insufficient, for
example, that the tree remains unchanged if most of
the start distances of its nodes change.

3. The code of our implementations is available at
www-rcf.usc.edu/~skoenig/fastreplanning.html.

References
Al-Ansari, M. 2001. Efficient Reinforcement Learning
in Continuous Environments. Ph.D. dissertation,

Washington, D.C.: IEEE Computer Society.

Even, S., and Gazit, H. 1985. Updating Dis-
tances in Dynamic Graphs. Methods of Op-
erations Research 49: 371–387.

Even, S., and Shiloach, Y. 1981. An Online
Edge- Deletion Problem. Journal of the ACM
28(1): 1–4.

Feuerstein, E., and Marchetti-Spaccamela,
A. 1993. Dynamic Algorithms for Shortest
Paths in Planar Graphs. Theoretical Comput-
er Science 116(2): 359–371.

Franciosa, P.; Frigioni, D.; and Giaccio, R.
2001. Semidynamic Breadth-First Search in
Digraphs. Theoretical Computer Science
250(1–2): 201–217.

Frigioni, D.; Marchetti-Spaccamela, A.; and
Nanni, U. 2000. Fully Dynamic Algorithms
for Maintaining Shortest-Path Trees. Jour-
nal of Algorithms 34(2): 251–281.

Frigioni, D.; Marchetti-Spaccamela, A.; and
Nanni, U. 1998. Semidynamic Algorithms
for Maintaining Single-Source Shortest-
Path Trees. Algorithmica 22(3): 250–274.

Frigioni, D.; Marchetti-Spaccamela, A.; and
Nanni, U. 1996. Fully Dynamic Output
Bounded Single Source Shortest Path Prob-
lem. In Proceedings of the Seventh Annual
Symposium on Discrete Algorithms,
212–221. New York: Association of Com-
puting Machinery.

Gerevini, A., and Serina, I. 2000. Fast Plan
Adaptation through Planning Graphs: Lo-
cal and Systematic Search Techniques. In
Proceedings of the Fifth International Confer-
ence on Artificial Intelligence Planning Sys-
tems, eds. S. Chien, S. Kambhampati, and
C. A. Knoblock, 112–121. Menlo Park,
Calif.: AAAI Press.

Goto, S., and Sangiovanni-Vincentelli, A.
1978. A New Shortest-Path Updating Algo-
rithm. Networks 8(4): 341–372.

Hammond, K. 1990. Explaining and Re-
pairing Plans That Fail. Artificial Intelligence
45(1–2): 173–228.

Hanks, S., and Weld, D. 1995. A Domain-
Independent Algorithm for Plan Adapta-
tion. Journal of Artificial Intelligence Research
2:319–360.

Hebert, M.; McLachlan, R.; and Chang, P.
1999. Experiments with Driving Modes for
Urban Robots. In Proceedings of the SPIE
Mobile Robots, 140–149. Bellingham,
Wash.: International Society for Optical En-
gineering.

Huiming, Y.; Chia-Jung, C.; Tong, S.; and
Qiang, B. 2001. Hybrid Evolutionary Mo-
tion Planning Using Follow Boundary Re-
pair for Mobile Robots. Journal of Systems
Architecture 47(7): 635–647.

Ishida, T., and Korf, R. 1991. Moving Target
Search. In Proceedings of the Twelfth Inter-
national Joint Conference on Artificial In-
telligence, 204–210. Menlo Park, Calif.: In-

ternational Joint Conferences on Artificial
Intelligence.

Italiano, G. 1988. Finding Paths and Delet-
ing Edges in Directed Acyclic Graphs. Infor-
mation Processing Letters 28(1): 5–11.

Kaelbling, L.; Littman, M.; and Moore, A.
1996. Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research
4:237–285.

Kambhampati, S., and Hendler, J. 1992. A
Validation-Structure-Based Theory of Plan
Modification and Reuse. Artificial Intelli-
gence 55(2): 193–258.

Klein, P., and Subramanian, S. 1993. A Fully
Dynamic Approximation Scheme for All-
Pairs Shortest Paths in Planar Graphs. In Al-
gorithms and Data Structures: Third Workshop,
WADS’93, 443–451. Lecture Notes in Com-
puter Science 709. New York: Springer-Verlag.

Koehler, J. 1994. Flexible Plan Reuse in a
Formal Framework. In Current Trends in AI
Planning, eds. C. Bäckström and E. Sandewall,
171–184. Amsterdam, The Netherlands:
IOS.

Koenig, S. 2001. Agent-Centered Search. AI
Magazine 22(4): 109–131.

Koenig, S., and Likhachev, M. 2002a. D*
LITE. In Proceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence,
476–483. Menlo Park, Calif.: American As-
sociation for Artificial Intelligence.

Koenig, S., and Likhachev, M. 2002b. INCRE-
MENTAL A*. In Advances in Neural Information
Processing Systems 14, eds. T. Dietterich, S.
Becker, and S. Ghahramani, 1539–1546.
Cambridge, Mass.: MIT Press.

Koenig, S.; Furcy, D.; and Bauer, C. 2002.
Heuristic Search-Based Replanning. In Pro-
ceedings of the Sixth International Conference
on Artificial Intelligence Planning Systems,
eds. M. Ghallab, J. Hertzberg, and P. Traver-
so, 294–301. Menlo Park, Calif.: AAAI Press.

Koenig, S.; Likhachev, M.; and Furcy, D.
2004. LIFELONG PLANNING A*. Artificial Intelli-
gence Journal 155:93–146.

Koenig, S.; Tovey, C.; and Halliburton, W.
2001. Greedy Mapping of Terrain. In Pro-
ceedings of the IEEE International Confer-
ence on Robotics and Automation,
3594–3599. Washington, D.C.: IEEE Com-
puter Society.

Koenig, S.; Tovey, C.; and Smirnov, Y. 2003.
Performance Bounds for Planning in Un-
known Terrain. Artificial Intelligence
147(1–2): 253–279.

Kollmann, J.; Lankenau, A.; Buhlmeier, A.;
Krieg-Bruckner, B.; and Rofer, T. 1997. Nav-
igation of a Kinematically Restricted
Wheelchair by the PARTI-GAME Algorithm. In
Proceedings of the Society for the Study of
Artificial Intelligence and the Simulation of
Behavior 1997 Workshop on Spatial Rea-
soning in Mobile Robots and Animals,

35–44. Technical Report, UMCS-97-4-1, De-
partment of Computer Science, University
of Manchester.

Korf, R. 1993. Linear-Space Best-First
Search. Artificial Intelligence 62(1): 41–78.

Korf, R. 1990. Real-Time Heuristic Search.
Artificial Intelligence 42(2-3): 189–211.

Kott, A.; Saks, V.; and Mercer, A. 1999. A
New Technique Enables Dynamic Replan-
ning and Rescheduling of Aeromedical
Evacuation. AI Magazine 20(1): 43–53.

Likhachev, M., and Koenig, S. 2003. Speed-
ing Up the PARTIGAME Algorithm. In Ad-
vances in Neural Information Processing Sys-
tems 15, eds. S. Becker, S. Thrun, and K.
Obermayer. Cambridge, Mass.: MIT Press.

Likhachev, M., and Koenig, S. 2002. Incre-
mental Replanning for Mapping. In Pro-
ceedings of the International Conference
on Intelligent Robots and Systems,
667–672. Washington, D.C.: IEEE Comput-
er Society.

Lin, C., and Chang, R. 1990. On the Dy-
namic Shortest-Path Problem. Journal of In-
formation Processing 13(4): 470–476.

Liu, Y.; Koenig, S.; and Furcy, D. 2002.
Speeding Up the Calculation of Heuristics
for Heuristic Search-Based Planning. In Pro-
ceedings of the Eighteenth National Con-
ference on Artificial Intelligence, 484–491.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

McDermott, D. 1996. A Heuristic Estimator
for Means-Ends Analysis in Planning. In
Proceedings of the Third International Confer-
ence on Artificial Intelligence Planning Sys-
tems, ed. Brian Drabble, 142–149. Menlo
Park, Calif.: AAAI Press.

Matthies, L.; Xiong, Y.; Hogg, R.; Zhu, D.;
Rankin, A.; Kennedy, B.; Hebert, M.;
Maclachlan, R.; Won, C.; Frost, T.;
Sukhatme, G.; McHenry, M.; and Goldberg,
S. 2000. A Portable, Autonomous, Urban
Reconnaissance Robot. In Proceedings of
the International Conference on Intelligent
Autonomous Systems. Amsterdam, The
Netherlands: IOS.

Miguel, I., and Shen, Q. 1999. Extending
FCSP to Support Dynamically Changing
Problems. In Proceedings of IEEE Interna-
tional Fuzzy Systems Conference,
1615–1620. Washington, D.C.: IEEE Com-
puter Society.

Moore, A., and Atkeson, C. 1995. The PARTI-
GAME Algorithm for Variable Resolution Re-
inforcement Learning in Multidimensional
State Spaces. Machine Learning 21(3):
199–233.

Moore, A., and Atkeson, C. 1993. PRIORITIZED

SWEEPING: Reinforcement Learning with
Less Data and Less Time. Machine Learning
13(1): 103–130.

Myers, K. 1999. CPEF: A Continuous Plan-

Articles

SUMMER 2004 111

Reuse in Dynamic Constraint-Satisfaction
Problems. In Proceedings of the Twelfth
National Conference on Artificial Intelli-
gence, 307–312. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Watkins, C., and Dayan, P. 1992. Q-LEARN-
ING. Machine Learning 8(3–4): 279–292.

Sven Koenig is an asso-
ciate professor at the
University of Southern
California. His research
interests are in the areas
of decision-theoretic
planning and robotics.
He has coauthored over
70 publications in these

areas and is the recipient of a National Sci-
ence Foundation CAREER award and an
IBM Faculty Partnership award. His e-mail
address is skoenig@usc.edu.

Maxim Likhachev is a Ph.D. student at
Carnegie Mellon University. His research
interests are in robotics.

Yaxin Liu is a Ph.D. student at the Georgia
Institute of Technology. His research inter-
ests are in the area of decision-theoretic
planning. He is the recipient of an IBM
graduate fellowship.

David Furcy is a Ph.D. student at the Geor-
gia Institute of Technology. His research in-
terests are in the area of search. His-email
address is dfurcy@cc.gatech.edu.

Search Methods. In Proceedings of the Tenth
European Conference on Artificial Intelligence,
ECAI92, 1–5. Chichester, U.K.: Wiley.

Simmons, R. 1988. A Theory of Debugging
Plans and Interpretations. In Proceedings
of the Seventh National Conference on Ar-
tificial Intelligence, 94–99. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Spira, P., and Pan, A. 1975. On Finding and
Updating Spanning Trees and Shortest
Paths. SIAM Journal on Computing 4(3):
375–380.

Stentz, A. 1995. The Focused D* Algorithm
for Real-Time Replanning. In Proceedings
of the Fourteenth International Joint Con-
ference on Artificial Intelligence,
1652–1659. Menlo Park, Calif.: Internation-
al Joint Conferences on Artificial Intelli-
gence.

Stentz, A., and Hebert, M. 1995. A Com-
plete Navigation System for Goal Acquisi-
tion in Unknown Environments. Au-
tonomous Robots 2(2): 127–145.

Sutton, R., and Barto, A. 1998. Reinforce-
ment Learning: An Introduction. Cambridge,
Mass.: MIT Press.

Tao, M.; Elssamadisy, A.; Flann, N.; and Ab-
bott, B. 1997. Optimal Route Replanning
for Mobile Robots: A Massively Parallel In-
cremental A* Algorithm. In Proceedings of
the IEEE International Conference on Ro-
botics and Automation, 2727–2732. Wash-
ington, D.C.: IEEE Computer Society.

Thayer, S.; Digney, B.; Diaz, M.; Stentz, A.;
Nabbe, B.; and Hebert, M. 2000. Distributed
Robotic Mapping of Extreme Environ-
ments. In Proceedings of the SPIE: Mobile
Robots XV and Telemanipulator and Telep-
resence Technologies VII, Volume 4195.
Bellingham, WA: International Society for
Optical Engineering.

Thrun, S. 1998. Lifelong Learning Algo-
rithms. In Learning to Learn, eds. S. Thrun
and L. Pratt, 181–209. New York: Kluwer
Academic.

Thrun, S.; Bücken, A.; Burgard, W.; Fox, D.;
Fröhlinghaus, T.; Hennig, D.; Hofmann, T.;
Krell, M.; and Schmidt, T. 1998. Map Learn-
ing and High-Speed Navigation in RHINO. In
Artificial Intelligence– Based Mobile Robotics:
Case Studies of Successful Robot Systems, eds.
D. Kortenkamp, R. Bonasso, and R. Mur-
phy, 21–52. Cambridge, Mass.: MIT Press

Trovato, K. 1990. DIFFERENTIAL A*: An Adap-
tive Search Method Illustrated with Robot
Path Planning for Moving Obstacles and
Goals and an Uncertain Environment. Jour-
nal of Pattern Recognition and Artificial Intel-
ligence 4(2): 245–268.

Veloso, M. 1994. Planning and Learning by
Analogical Reasoning. New York: Springer.

Verfaillie, G., and Schiex, T. 1994. Solution

ning and Execution Framework. Artificial
Intelligence 20(4): 63–69.

Nebel, B., and Koehler, J. 1995. Plan Reuse
versus Plan Generation: A Theoretical and
Empirical Analysis. Artificial Intelligence
76(1–2): 427–454.

Nilsson, N. 1971. Problem-Solving Methods
in Artificial Intelligence. New York: McGraw-
Hill.

Pearl, J. 1985. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Read-
ing, Mass.: Addison-Wesley.

Pemberton, J., and Korf, R. 1994. Incremen-
tal Search Algorithms for Real-Time Deci-
sion Making. In Proceedings of the Second In-
ternational Conference on Artificial
Intelligence Planning Systems, ed. K. Ham-
mond, 140–145. Menlo Park, Calif.: AAAI
Press.

Peng, J., and Williams, R. 1993. Efficient
Learning and Planning within the DYNA

Framework. Adaptive Behavior 1(4):
437–454.

Podsedkowski, L.; Nowakowski, J.;
Idzikowski, M.; and Vizvary, I. 2001. A New
Solution for Path Planning in Partially
Known or Unknown Environments for
Nonholonomic Mobile Robots. Robotics
and Autonomous Systems 34:145–152.

Pohl, I. 1973. The Avoidance of (Relative)
Catastrophe, Heuristic Competence, Gen-
uine Dynamic Weighting and Computa-
tional Issues in Heuristic Problem Solving.
In Proceedings of the International Confer-
ence on Intelligent Robots and Systems,
20–23. Washington, D.C.: IEEE Computer
Society.

Pohl, I. 1970. First Results on the Effect of
Error in Heuristic Search. In Machine Intel-
ligence, Volume 5, eds. B. Meltzer and D.
Michie, 219–236. New York: American Else-
vier.

Ramalingam, G., and Reps, T. 1996a. An In-
cremental Algorithm for a Generalization
of the Shortest-Path Problem. Journal of Al-
gorithms 21(2): 267–305.

Ramalingam, G., and Reps, T. 1996b. On
the Computational Complexity of Dynam-
ic Graph Problems. Theoretical Computer
Science 158(1–2): 233–277.

Rohnert, H. 1985. A Dynamization of the
All Pairs Least Cost Path Problem. In Pro-
ceedings of the Second Annual Symposium on
Theoretical Aspects of Computer Science,
279–286. New York: Springer-Verlag.

Romero, L.; Morales, E.; and Sucar, E. 2001.
An Exploration and Navigation Approach
for Indoor Mobile Robots Considering Sen-
sor’s Perceptual Limitations. In Proceedings
of the International Conference on Robot-
ics and Automation, 3092–3097. Washing-
ton, D.C.: IEEE Computer Society.

Russell, S. 1992. Efficient Memory-Bounded

Articles

112 AI MAGAZINE

