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■ Complex electro-mechanical products, such as
high-end printers and photocopiers, are designed
as families, with reusable modules put together in
different manufacturable configurations, and the
ability to add new modules in the field. The mod-
ules are controlled locally by software that must
take into account the entire configuration. This
poses two problems for the manufacturer. The first
is how to make the overall control architecture
adapt to, and use productively, the inclusion of
particular modules. The second is to decide, at de-
sign time, whether a proposed module is a worth-
while addition to the system: will the resulting sys-
tem perform enough better to outweigh the costs
of including the module? This article indicates
how the use of qualitative, constraint-based mod-
els provides support for solving both of these prob-
lems. This has become an accepted part of the
practice of Xerox, and the control software is de-
ployed in high-end Xerox printers. 

Complex electro-mechanical products are
designed as composites of modules con-
trolled by software. Design of these sys-

tems involves marketers who try to understand
what is needed and would be bought by the
market, hardware designers who create new
components and combinations that help to
satisfy identified needs, and software engineers
that create the control code that allows the sys-
tem to function as envisioned for the market.
Current practice is for marketers to produce
documents that describe their intuitions; hard-
ware designers working from these informal
descriptions to produce prototypes that match
the functional requirements described; and
then turning these over to software experts to
make it all work together. 

As products become more and more soft-
ware enabled, manufacturers of equipment are
facing the challenge that the proportion of de-
velopment resources expended on the software
component of a design and implementation is
growing exponentially. Let us consider the
challenges for the software engineer. The basic
programming approach is to write one mono-
lithic piece of control code that is cognizant of
every module of the machine. The system con-
troller for a reprographic system is the most
challenging piece of software in the machine.
In the past, the construction of such con-
trollers has been a complex and labor-inten-
sive task. Experienced software engineers start-
ed from the expected standard specifications of
documents to be produced on the machine
(e.g., all duplex sheets, or one simplex [cover]
sheet followed by all duplex sheets, together
with sheet sizes, etc.). They then identified a
fixed set of operations that would produce
sheets according to these specifications on a
given configuration. This required analyzing
the interactions of machine components dur-
ing those operations and devised special case
rules that would produce optimal schedules for
most of the documents expected to be pro-
duced (e.g., A4-size sheets, all simplex or all
duplex). The outputs of the analysis were de-
tailed flowcharts that dictated which paramet-
ric template to use for scheduling under which
circumstances.

Component interaction analysis is complex.
Mapping this directly to control software leads
to code that is difficult to understand, main-
tain, and extend. Most importantly, this prac-
tice of manual analysis and code development
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with the business team, marketing had asked
for plug-and-play capability as a sales advan-
tage, but no approach to control such systems
was available at the time; our methodology
solved this problem for them and improved
overall productivity in software development.
In addition, Xerox is using this analysis
methodology to decide between alternative
configurations for future products.

The Structure of the Machine 
Reprographic machines consist of a source of
paper and images, a complex paper path that
brings these together at the right time, place
and orientation, and finishing components
that collate, sort, staple and bind the resulting,
marked sheets. The software control system co-
ordinates this activity for not just a single job,
but a stream of jobs that come in at random in-
tervals. The paper path is a central element of
this structure. Our primary example shows
how model-based computing enables flexible
generation of control code for moving paper
along this path. 

Large machines are typically split into mod-
ules such as “feeder,” “mark engine,” and “fin-
isher.” Feeders, housing several sheet trays,
serve as sheet sources. The mark-engine mod-
ule processes images and transfers them onto
sheets. Finishers sort sheets, collect them in
bins, and staple or bind them. High-end con-
figurations typically consist of multiple feeder
and finisher modules, connected in series and
with a mark engine module in between. Figure
1 shows a typical configuration of a mid-size
print engine with three modules: a feeder mod-
ule with three feed trays, a mark engine mod-
ule that is able to produce single and double-

results in configuration-specific software. Re-
prographic machines are following the com-
mon trend toward plug-and-play systems,
where the customers can buy and put together
different machine modules to satisfy different
needs. Yet for a machine that is configured by
the customer, the system controller has to be
itself compositional, something that is almost
impossible to provide economically with the
traditional approach.

The key breakthrough for a new paradigm is
building constraint-based, qualitative, compo-
sitional models of system components. When
these models are of sufficient fidelity, there is
no need to develop specific control algorithms
that schedule, monitor, and control the ma-
chine in response to tasks presented to it. In-
stead, the control software in the machine ex-
plicitly constructs a plan and monitors its
execution in real time. This plan is formally de-
rived from the description of the machine’s
modules and a description of the task at run-
time. This approach has several powerful ad-
vantages: (1) The resulting schedules can be
nearly optimal for all tasks. (2) The software
engineer needs only build models and does not
have to write any scheduling code for the en-
tire machine. (3) The machine can be reconfig-
ured in the field. Modules never foreseen at
original manufacture time can be added to the
system later.

The basic paradigm shift is that the software
engineers become model builders and program
execution is replaced by planning and con-
straint satisfaction.

Our goal is not only to increase the produc-
tivity of software developers, but also to im-
prove the communication among different
subsystem engineers (mechanics, electronics,
software, etc.), to ensure the consistency across
different engineering tasks (design, control,
testing, diagnosis), and to enable automatic,
modular configuration of the resulting systems
of the controller. A model-based controller per-
spective supports other activities including the
very earliest part of the design process—deter-
mining what kinds of modules would be
worthwhile producing for the market. Using a
model of the profile of jobs that are to be han-
dled by the machine, we can see if adding a
new module (say an additional sheet buffer)
would increase the productivity of the ma-
chine sufficiently to add value to the end-cus-
tomer. The ability to perform such configura-
tion analyses for hypothetical machines has
proven to be of significant value to designers. 

The software for control described here has
been deployed in Xerox high-end printers for
the last five years. When we first started work
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Figure 1. Schematic View of a Modern Reprographic Machine.



sided prints (simplex and duplex sheets), and a
finisher with two output trays.1

Modules themselves consist of multiple
components. The mark engine module (figure
2), for example, consists of a photo-receptor
belt, an image transfer component, a sheet in-
verter, path merging and splitting compo-
nents, and two simple sheet transport compo-
nents (registration and duplex loop). The
transfer component prints an image onto one
side of the sheet from a continuously revolving
photo-receptor belt onto which images are laid
in the form of charged toner particles.

The inverter has two modes of operation
(figure 3); because it will be our running exam-
ple in this article, we explain it in more detail.
In one mode of operation, the sheet is guided
by the inversion gate G from the input rollers
Rin down into the inversion rollers Rinv; when
its trailing edge clears the gate, the sheet is
stopped and then moved in reverse direction
up and through the output rollers Rout. In the
other mode, the sheet is moved from the input
rollers, guided by the inversion gate in its
down position, directly to the output rollers.
Thus, the first mode inverts a sheet from face-
up to face-down orientation or vice versa,
while the second mode bypasses this operation
and leaves the sheet’s orientation unchanged.
The other components of the mark engine
module primarily move sheets along the paper
path.

In this configuration, a simplex sheet is pro-
duced as follows. A sheet is fed from a feeder
tray into the mark engine module and moved
to the registration component, while a video
image is received and laid down onto the con-
tinuously revolving photo-receptor belt. As
this image and the sheet meet in the transfer

component, the image is printed onto the
sheet. The sheet is then moved along the by-
pass path to the output on the right and from
there into an output tray. For a duplex sheet,
two video images are received. After the first
image has been printed onto the sheet as for a
simplex sheet, the sheet is inverted in the in-
verter and moved through the duplex loop
back to registration. In the meantime, the sec-
ond video image is laid down onto the belt so
that it can be transferred onto the sheet’s back
side when the sheet passes through the transfer
component. Afterwards, the sheet is inverted
again in the inverter (so that it is face up) and
moved out.

Control Software Architecture
and Control Process 

Our new model-based control software archi-
tecture is hierarchical. This mirrors the archi-
tecture of the machine itself, which is made up
of a number of independent modules, with a
top-level module controller. Each machine
module comes with its own microprocessor,
memory, etc., and with software that controls
the module’s operations. Part of a module con-
troller’s job is to integrate the operations of the
machine module into complete functions. For
instance, a mark engine module controller
may export exactly two functions, namely
printing a simplex or duplex sheet. When told
to execute one of these functions at a certain
time, the controller will autonomously start
and monitor the necessary operations at the
right times. Another part of a module
controller’s job is to mask local variances in im-
age and sheet processing, in particular timing
variances. In other words, under feedback con-
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Figure 3. Schematic View of the Inverter in the Paper Path.

Satisfying the 
Machine Constraints

When planning and scheduling the machine’s
operations, the controller has choices in select-
ing and interleaving operations. It tries to op-
timize certain criteria, such as the start and
completion times of a document, while honor-
ing the modules’ physical and computational
constraints. The transportation and printing of
sheets and images is constrained in various
ways by the physics of the machine. For exam-
ple, for a machine to operate properly, sheets
are transported in almost continuous move-
ment along the paper path, and the timing of
sheets is determined by the lengths and speeds
of the transport components; images can be
placed on the photo-receptor belt only at cer-
tain places (e.g., because a seam in the belt
must be avoided); and sheets and images have
to be synchronized in the transfer component.
The properties of both components and sheets
may impose constraints on the execution. For
example, an inverter may only be able to invert
sheets that don’t exceed a certain length.

Furthermore, it would be simple to transport
and print one sheet at a time, but productivity
can be improved significantly if multiple
sheets are printed in tight succession. In this
case, the controller has to make sure that
sheets never collide. For example, the time it
takes a sheet of paper to be inverted in the in-
verter is longer than the time for it to just pass
through. Thus, if a sheet to be inverted at the
inverter is followed by a sheet that is not to be
inverted, the controller has to schedule a gap
between the two sheets in order to avoid hav-
ing the second sheet “catch up” with the first
one and jam. The length of the gap depends
both on the inversion time (which is propor-
tional to the length of the inverted sheet) and

trol, a module controller abstracts away many
of the local deviations from the expected be-
havior and thus makes the module’s functions
predictable.

The system controller breaks the system’s
functions down into module functions and co-
ordinates the modules in order to produce the
desired documents. For example, in order to
deliver a set of simplex sheets in a desired out-
put tray, the system controller will tell the feed-
er, mark engine and finisher modules to feed,
print and finish the sheets at certain times such
that together a complete document is pro-
duced. This print-engine system controller re-
ceives a potentially continual stream of docu-
ment specifications from a variety of sources,
such as the network, the scanner, and the fax
input. A document specification only describes
the desired output, e.g., “five collated, stapled,
double-sided copies of a 10-page document.”
This specification is mapped into a sequence of
sheet specifications, with specific images on
each side, that must reach the output in a cer-
tain order. The system controller’s job is to de-
termine the operations that will produce this
sequence, while optimizing machine produc-
tivity. From the sheet specifications, the system
controller first plans the module operations
that need to be executed for each sheet, and
then schedules these operations. (By planning,
we mean the decision of what operations to ex-
ecute in what order. By scheduling, we mean
the decision of when to execute these opera-
tions.) Scheduling operations as close together
as possible, even interleaving them when feasi-
ble, enables the controller to keep the machine
as busy as possible, maximizing productivity
for the customer. Thus, the system controller
has to be able to both generate and commit to
schedules incrementally.



on the time it takes to switch the inverter gate.
To facilitate controller development and en-
able modular machines, we set out to under-
stand the constraints on document production
imposed by machine components, to formalize
the reasoning that has hitherto been done in-
formally, and to develop algorithms that per-
form that reasoning in a plug-and-play system.
In the remainder of this article, we will develop
a domain theory for a model-based version of
the print-engine controller.

Modeling 
Our domain theory is driven by our primary
task, control. By using a declarative modeling
approach, however, we are able to extend this
theory and thus use our models for other tasks.
Conceptually, reprographic machines may be
thought of as multi-pass assembly line ma-
chines, where parts (e.g., sheets and images)
are moved along the assembly line (e.g., paper
path, photo-receptor belt), manipulated, and
put together, until a desired output is pro-
duced. Intuitively, each component is a trans-
ducer of timed streams of sheets and images.
Thus, it may receive a sheet at a certain time at
its input port, transform the sheet as directed
by a control command, and produce the result
as output at a certain later time at its output
port. For example, when directed to invert a
sheet, an inverter receives a sheet at its input
port, changes its orientation, and forwards the
otherwise unchanged sheet to its output port.
For a complete machine, producing an output
sheet consists of executing a set of component

operations that together, if performed in the
right sequence, transform input sheets and im-
ages into printed output sheets.

Capabilities
Each distinct operation of a component is
modeled as a capability. Components can have
several capabilities. A component capability is
defined by the transformation it performs (e.g.,
inversion changes a sheet’s orientation from
face-up to face-down and vice versa); con-
straints on the features of sheets and images
(e.g., the sheet length has to be less than 436
mm for inversion); its timing behavior (e.g.,
the time it takes to move a sheet from input to
output, with inversion, is the bypass path
length plus sheet length divided by compo-
nent speed); and any requirements on internal
resources (e.g., only one sheet can be inverted
at a time, and inversion requires that the inver-
sion gate is switched to the inverting position).

A component often has multiple capabilities.
For example, an inverter can also forward a
sheet unchanged through the bypass path (fig-
ure 4). Typically, each capability has its own
constraints on features and timing of sheets and
images, but uses some shared resources. A re-
source may be the space between transport
rollers or on a belt, a gate that can be switched
into different positions, or a bin that has a lim-
ited capacity. For example, while the inverter’s
bypass capability does not change the sheet and
requires less time to move the sheet from input
to output, the sheet still needs the rollers while
moving through, and the inversion gate has to
be in the bypass position. By modeling rollers
and gate as shared resources and use of rollers
and gate as allocation constraints for these re-
sources we are able to model the interactions be-
tween capabilities in a modular fashion as illus-
trated in the inverter model in figure 4.

Task
This theory of components and their capabili-
ties is based on a detailed analysis of the re-
quirements of print-engine control. There are
two parts to this analysis, conceptualization
and representation, discussed in the following.

First, our models need to provide the neces-
sary information to enable the control task. As
described, print-engine control consists of two
stages, planning and scheduling. Planning
consists of identifying the component capabil-
ities that in sequence produce a desired docu-
ment sheet. The result is a plan of selected
component capabilities for one sheet, or
simply a sheet plan. Scheduling means finding
feasible timings for the capabilities in such a
plan, resulting in a sheet schedule, a timed
sheet plan, that forms the basis for the control
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Figure 4. Constraints Are Derived from Physical Model of the Inverter.
A sheet of paper enters through port “in,” either going directly across to port out
if the resource “gate position” is in the bypass position, or going down if the gate
is in the invert position. Other parts of the model include various parameters and
timing constraints.
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it this way made it easier to write the case-
based control software. However, newer ma-
chines can deliver documents either face-up or
face-down, and thus simplex sheets are some-
times inverted, while duplex sheets sometimes
are not inverted after the second image trans-
fer. So it seemed, in order to be more general,
that the inversion constraint should be stated
as a constraint between inverted and non-in-
verted sheets. Today’s machines, however, also
process multiple sheet sizes (e.g., an 11-by-14
inch [A3] sheet that is folded as an insert in an
8.5-by-11 inch [A4] magazine). Since inversion
time is proportional to sheet length, it turns
out that the inversion constraint also holds be-
tween two inverted sheets if the first one is
longer than the second one. This generaliza-
tion was “discovered” only when we developed
our first inverter model from first principles. 

Many constraints, in particular timing con-
straints like the inversion constraint, intuitive-
ly are expressed as constraints between inter-
acting components and/or interacting sheets
and images. However, this formulation quickly
makes it awkward or even impossible to model
machines in a modular way. If the configura-
tion changes only slightly, e.g., if another in-
verter is added to the paper path (say, before
the image transfer), the interaction analysis
has to be redone to account for the accumulat-
ing delays. What is worse, the inversion con-
straint may become different for each inverter,
depending on the relative position of the in-
verter in the configuration. Formulating phys-
ical constraints as constraints between multi-
ple sheets and images also runs counter to the
requirement that the controller be able to
schedule sheets incrementally, sheet by sheet,
and would further complicate the model as
well as the controller implementation. High-
end machines, for example, are able to process
up to ten different sheet sizes. Analyzing and
keeping track of all possible interactions is not
an attractive option. 

In summary, the original formulation of the
inversion constraint was not robust when any
of the configuration, the sheet behavior, or the
sheet properties changed. Using a modeling
approach that derives constraints from the
physical structure of devices as shown in figure
4 provides a better basis for reusability and
compositionality. 

Starting from first principles, we find, for ex-
ample, that performing the invert capability
has a certain duration depending only on the
sheet’s features, and that the capability re-
quires and competes for certain component re-
sources such as roller space and gate position.
Similarly, the bypass capability has a certain

commands (e.g., “feed at time 1500 in tray 1,
move at time 3000 in transport 2,” etc.). The
total set of sheet schedules at a specific time is
simply called the schedule. While a sheet plan
usually is determined independently for each
sheet specification, a schedule may interleave
these plans and therefore must honor addi-
tional consistency and resource constraints.

For each sheet, the inputs to the planning
phase are a specification of the desired features
of the output sheet, as well as input ports that
provide blank sheets and new images (e.g., feed
trays and video input). While the machine’s
paper and image paths are defined by its com-
ponents and their connections, planning is
somewhat complicated by the fact that there
may be multiple alternative paths and loops,
and not all components may be able to handle
all sheets. In order to find a sheet plan, the
planner takes into account each capability’s
transformation and feature constraints: the
plan must correctly produce the desired output
sheet from the input sheet and image(s), and
none of the feature constraints (e.g., con-
straints on sheet size) must be violated. For ex-
ample, given a well-defined input orientation,
the sequence of capabilities along the paper
path will determine the output orientation of
the sheet by composing the changes of the
sheet’s orientation feature along the way. If
there are multiple possible plans for a given
output specification, either the planner or the
scheduler may decide on which one to choose. 

Given such a plan (or multiple plans) for
each sheet, together with constraints on the
sheets’ output order, the scheduler then has to
find a time for each selected capability that sat-
isfies all timing constraints and possibly opti-
mizes some objective function (e.g., productiv-
ity measure). 

Representation
The most important guiding rules have been to
start from first principles, and to heed the “no
function in structure” principle (deKleer and
Brown 1984). While this is common credo in
model-based reasoning, it was harder to con-
vince software engineers of the benefits. We il-
lustrate this in two examples.

The engineers originally formulated the in-
version constraint as: “if a duplex sheet is fol-
lowed by a simplex sheet, the simplex sheet
has to be fed with a delay that is equal to the
inversion time of the duplex sheet.” Engineers
found it useful to “compile” the system’s ex-
pected behavior into a constraint between sim-
plex and duplex sheets, simply because tradi-
tionally duplex sheets were always inverted
while simplex sheets were not. Thinking about



duration and competes for the same resources.
Neither capability has to mention how it inter-
acts with multiple executions of itself or anoth-
er capability. Instead, we rely on the constraint
systems to manage these interactions. 

The abstraction provided by the low-level
module controllers makes it possible to repre-
sent capability execution as discrete events
with predictable durations and transport times.
We can further model all velocities as either
constant or, when required, as changing dis-
continuously. 

Modeling Language
Abstractly we can think of a model in terms of
a set of connected components, each of which
has a structural description and a behavioral
description. The structural description specifies
entry and exit ports, internal resources shared
by its capabilities, and the parameters of the
model. Behaviorally, each component is mod-
eled by a set of capabilities, where each capabil-
ity is a distinct operation of the component,
typically on a single sheet or image. A capabil-
ity is described by the tuple <U, I, O, C>, where
U is its control command (naming the capabil-
ity, with reference time), I and O are sets of in-
put and output events, and C are its feature
and timing constraints, Cf and Ct. An event is
a triple <P, S, T>, where P is an entry or exit
port, S is a sheet or image entering or exiting
through P, and T is the time of entry or exit. 

Sheets and images are represented through
their features (e.g., length, width, color, orien-
tation, and images). The feature constraints Cf
are constraints on and between the sheet’s or
image’s features (combined in S), while the
timing constraints Ct are constraints on and
between the timing variables T. Cf includes
constraints that represent the capability’s
transformation. Ct includes resource allocation
constraints. A composite configuration is de-
fined as a set of components with connections
between their ports. When capabilities of two
connected components are selected and com-
posed for a sheet plan, the output event of the
first component’s selected capability becomes
the input event of the second component’s se-
lected capability. Thus, both feature and tim-
ing constraints are propagated within a se-
quence of selected capabilities. In particular,
the transformational constraints on sheet and
image features are accumulated from input to
output, providing a complete specification of
the output sheet produced by a sheet plan.

This composition of capabilities and propa-
gation of constraints is done during the plan-
ning step or can be done ahead of time in a

precompilation step. Solving the timing con-
straints is then part of the scheduling step.
Planning here is similar to forward simulation
with discrete events and event propagation in
other formalisms, in particular discrete event
simulation languages (Al-Aomar and Cook
1998; Banks, Carson, and Nelson 1995;
Vaidyanathan, Miller, and Park 1998) and Petri
Nets (Ghezzi et al. 1991; Peterson 1981). How-
ever, these languages are generally restricted to
simulation, performance evaluation, and rea-
soning about specific software properties such
as freedom from deadlocks.

Concretely, we provided a modeling lan-
guage that can be thought of as a declarative
specification of the input/output constraints,
but one that looked familiar to the engineers
who were intended to use it. This language, CDL

(Component Description Language), has a syn-
tax that is based on the syntax of C++, with the
intention of lowering the barrier for use. CDL

has become part of the practice of the engi-
neers in Xerox since 1995 and is an integral
part of a generic, reusable machine control tool
kit. However, to provide reasoning capabilities
with a good semantic basis, we translate this
language into a concurrent constraint pro-
gramming (CCP) language, a well-defined
framework (Fromherz, Gupta, and Saraswat
1997) that with the appropriate libraries of
constraint solvers supports the simulation, par-
tial evaluation, abduction, and general reason-
ing that we need. We would like to emphasize
that we consider both this higher-level
modeling language and the lower-level CCP
language that provides its foundation impor-
tant elements of our approach. They both serve
important purposes, one to support human
communication and the other to support com-
puter processing. 

CDL provides behavioral statements (con-
straints) akin to those available in a typical
CCP language, together with constructs for the
specification of structural elements not usually
available in a constraint language. As a con-
crete example, consider again the inverter
component (figure 4). Structurally, the inverter
has two ports, in and out, through which
sheets enter and leave. We model the rollers at
entry and exit ports as (unary-capacity) re-
sources rin and rout, because only one sheet is al-
lowed in a port at any one time. We also model
the inverter switch as a (state) resource rinv that
has to be in either “bypass” or “invert” posi-
tion while the sheet is moving through. (Note
that “bypassing” and “inverting” denote val-
ues of state variables.) Finally, the model is pa-
rameterized by the length of the path from en-
try to exit ports (in mm), and by the speed of

Articles

126 AI MAGAZINE



Articles

WINTER 2003    127

Component Inverter(int length, int speed) {
EntryPort in; // ports
ExitPort out;
UnaryResource r_in, r_out; // declarations
StateResource r_inv;
IntVariable t_out, d, d_byp, d_inv;
FeatureVariable s, s_in, s_out;

Capability Bypass(IntVariable t_in) {
in.Input(s, t_in); // input/output events
out.Output(s, t_out);
s.width <= 285; // feature constraint
t_in + d_byp == t_out; // event time constraints
d_byp == length/speed;
d == s.length/speed;
r_in.Allocate(t_in, d); // resource constraints
r_out.Allocate(t_out, d);
r_inv.Allocate(t_in, d_byp, "bypassing");

} // Capability Bypass

Capability Invert(IntVariable t_in) {
in.Input(s_in, t_in); // input/output events
out.Output(s_out, t_out);
s_in.width <= 285; // feature constraints
s_in.length <= 436;
s_out == s_in except {orientation}; // sheet transformation
s_in.orientation == 1 - s_out.orientation;
t_in + d_inv == t_out; // event time constraints
d_inv == (length+s_in.length)/speed;
d == s_in.length/speed;
r_in.Allocate(t_in, d); // resource constraints
r_out.Allocate(t_out, d);
r_inv.Allocate(t_in, d_inv, "inverting");

} // Capability Invert
} // Component Inverter

Figure 5. The Complete CDL Model of the Inverter.

machine adjusts its own machine model. The
modules pass up their module models to the
system controller, where the models are com-
posed to a machine model as explained above.
(Some customization, such as instantiation of
the speed parameter, may be done at this time.)
At run time, given this machine model and the
specifications for desired document sheets, the
system controller plans the module operations
that need to be executed for each sheet, and
then schedules these operations. 

Planning
Given an output specification defined by fea-
ture constraints on a sheet of paper that is to
appear at a particular output port, the task is to
find one or all plans of machine capabilities
that produce the specified output. Given a ma-
chine model, and reasoning about capabilities,
connections, and the desired output port and
specification, a plan is a sequence of modules
visited in order that start from a source of
sheets of the right type, and provide the appro-
priate transformations of the features of the
sheet. No timing information is included in
the plans. Given that the plans depend primar-
ily on a few sheet parameters and the configu-

the rollers (in m/s). (Parameters may be instan-
tiated either when defining an instance of the
component, when composing components, or
when selecting component capabilities at run-
time.)

The inverter’s two capabilities are modeled
as follows. A sheet s to be passed through with-
out inversion (first capability) will enter the
component at time t_in and exit at time t_out.
Only sheets of width 285 mm or less can be
handled by the inverter. It will take a certain
amount of time d_byp to move from entry to
exit, and the sheet will be in the entry and exit
rollers for a duration d. These times are deter-
mined by the length and speed of the compo-
nent as well as the length of the sheet. Finally,
the two roller resources are busy while the
sheet is in the rollers, and the switch resource
has to be in bypassing state for the whole time.
The component controller associated with the
inverter will be instructed to perform this capa-
bility with the command Bypass(t_in) (name
and reference time). 

A sheet s_in to be inverted (second capabili-
ty) will be transformed to an output sheet s_out
that is identical to the input sheet except for its
orientation, which is reversed. In addition to
the width constraint, sheets are limited to a
length of 436 mm. Also, the time between en-
try and exit increases by the time it takes to in-
vert the sheet, which is proportional to its
length. Resource allocations correspond to
those of the bypass capability. The correspond-
ing control command is Invert(t_in). The com-
plete CDL model of the inverter is defined as in
figure 5.

A module is modeled by specifying its com-
ponents and their connections, and by defin-
ing itineraries, the mappings from module
commands to component commands. A mod-
ule integrates the control of its components in-
to higher-level commands: when the control
module receives a command, it sends the re-
quired component commands to its compo-
nents. Composite modules currently do not
have their own resources (because we did not
find a need for it). They may pass parameters
through to the components.

Model-Based Applications
The primary problem that pushed us to using
modeling was building a system control frame-
work for systems that can be configured out of
different modules, some even being installed
long after the system has left manufacturing.
This control program had to continue to work
without change to take into account the partic-
ular configuration. At initial power-up after a
machine has been physically reconfigured, the



ration, it is possible to cache the results for var-
ious plans, making this a very efficient part of
the process. 

Scheduling
The scheduler receives the stream of sheet
plans, to which it typically adds further con-
straints, such as precedence constraints be-
tween output times (to enforce the correct
sheet output order) and between the current
(real) time and a plan’s input times (to force
the plans to be scheduled in the future)
(Fromherz and Conley 1997). The scheduler
then solves these timing constraints in order to
find a feasible schedule, while maximizing pro-
ductivity. 

The scheduler may solve the timing con-
straints repeatedly in order to generate a sched-
ule incrementally. A sheet plan’s constraints
may be solved immediately after receiving it,
or when several plans are available. Solving the
constraints instantiates the reference time vari-
ables of the control commands, which are then
sent to the module controllers in order to exe-
cute the schedule. There is a spectrum of
scheduling algorithms and architectures that
can be based on this framework. We have im-
plemented algorithms that range from efficient
search engines using pre-compiled versions of
the constraints (Saraswat et al. 1996), to flexi-
ble, reactive optimizers based on a generic con-
straint solver (Fromherz and Conley 1997)
(both running in launched products), to inte-
grated planning and scheduling algorithms.
These algorithms further allow for various
choices such as the amount of look-ahead in
the sequence of selected capabilities, and the
timing of when to commit to parts of the incre-
mental schedule (Fromherz and Carlson 1993).
Implementation descriptions may be found in
a related paper (Fromherz, Saraswat, and Bo-
brow 1999).

Configuration Analysis
Typically, market studies are used to identify
the “average” user’s workload distribution, and
the system is designed to optimize perfor-
mance with respect to this average distribu-
tion. But individual users are likely to subject
the system to workload distributions that vary
from the average. Ideally, the design process
would be sensitive to this uncertainty about
the application context of a product family.

Given a machine model with a set of design
variables whose values are unknown (e.g., the
velocities and lengths of transport modules),
the design and analysis task consists of deter-
mining consistent values for these variables
such that performance and cost of the resulting

design are optimized. We used the model-
based techniques described here to develop de-
clarative, multi-use models of machines, with
certain parameters open and only constrained
by ranges. Using these models, we can analyze
design solutions in the face of both exact and
qualitative workload distribution knowledge.
Given exact knowledge about expected jobs,
the model-based scheduler can simply deter-
mine and compare the productivity of a set of
configurations (often finding counterintuitive
solutions, such as in one instance showing
how a slower component actually increased
overall productivity) (Kapadia and Fromherz
1997).

When given only a qualitative classification
for workload distribution (with “frequent” and
“infrequent” jobs), we can compute the ex-
pected deviations of different configurations
from optimal productivity and determine a
convex hull that shows which designs are best
for which workload distributions (Kapadia and
Fromherz 1997). This helps the designer under-
stand how different workload distributions in-
fluence the generation of optimal designs. Fur-
thermore, this analysis may be used to avoid
commitment to a specific design in the absence
of accurate workload distribution until such in-
formation becomes available. In particular, one
can predetermine a set of designs (machine pa-
rameters) with associated distribution bound-
aries and later, given concrete knowledge
about expected jobs, look up the best design
and adapt machine parameters accordingly.

Implementation Concerns
Our scheduling task is representative of a class
of reactive controllers that have a model of the
controlled system and thus can predict the sys-
tem’s behavior. All other information, such as
information about documents, is disclosed in-
crementally. We found three points particular-
ly relevant for the scheduler’s constraint solver:

First, the solver constantly alternates be-
tween adding constraints, searching for solu-
tions, and committing to partial solutions (e.g.,
the next sheet to be printed) (Fromherz and
Carlson 1993) (which makes memory manage-
ment, in particular garbage collection in the
constraint network, more difficult).

Second, the solver has to distinguish be-
tween temporary decisions (for search) and
committed decisions (parts of a schedule that
are being executed).

Third, the solver has to manage the relation
between timing variables and real time (e.g.,
the timings for any given sheet have to be
greater than or equal to the current real
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straint-based scheduling tractable even for real-
time. First, although finding a solution for a
constraint network is in general exponential in
the number of variables, the constraints for
typical configurations and jobs we have en-
countered so far result in constraint graphs
that have a tree structure. Also, our application
does not impose deadlines on jobs, i.e., there is
always a feasible schedule. Finding an optimal
schedule for general sheet sequences (e.g., with
mixed simplex and duplex sheets in the same
document) is still exponential. For homoge-
neous sheet sequences and typical machine
configurations, however, the first solution is
guaranteed to be optimal. In other words, for a
set of typical machines, we can always find a
solution in polynomial time, and for a set of
typical jobs, we can also find the best solution
in polynomial time. Finally, we can restrict the
complexity of CDL models to a class of “max-
closed” constraints, an algebraic closure condi-
tion that ensures tractability.

Conclusion
As the demand for more functionality and low-
er cost increases, the processes used in design-
ing and controlling electro-mechanical systems
become both more important and more diffi-
cult. We have sketched here an approach to the
design, control, and evaluation of complex sys-
tems that leverages our work in model-based
computing. This methodology starts with de-
clarative, compositional models that enable
both qualitative and quantitative reasoning at
design and run time. Models describe the local
behaviors of components, stating constraints
and transformations on parts moving through
the components as well as constraints on the
timing of resource allocations. Some aspects of
the model constraints are qualitative in that
they deal with symbolic properties of the sheets
as they are transformed by the various compo-
nents. Others are qualitative by virtue of their
use of interval constraints. The final schedule
for a particular is of necessity numeric, since
precise times must be chosen for each control
action. By using this combination of symbolic,
qualitative, and numeric constraints, and con-
necting component models to describe entire
machines, we can reason about the behavior of
the composite configuration. This approach en-
ables a variety of applications, and model-based
product development has become an integral
part of practice at Xerox.

Note
1. This example is realistic, but simplified, and this
(and all other examples) should not be taken as de-
scribing an existing or future product.

time—which is a moving target—until the
sheet is being printed).

We used two guiding principles in our solver
design. First, all low-level constraint operations
(propagation, search, garbage collection)
should be as incremental and distributed over
time as possible in order to minimize their ef-
fects at any one time and to allow for trade-offs
between memory and processor usage. Second,
the scheduling algorithm should be able to
make use of its application knowledge, which,
together with a well-defined model of reactive
computing, helps the solver manage its re-
sources effectively. We also provide special
functions for our reactive scheduling task, such
as the ability to constrain variables with respect
to the current real time when required and eas-
ily remove this constraint when appropriate.

An on-line scheduler, one that makes
choices in parallel to job submission and
schedule execution, is inherently suboptimal,
because it makes decisions based on incom-
plete information about the future. Besides the
implementation of the underlying constraint
solver, there are various task-level choices that
can affect the efficiency and optimality of a
generic on-line scheduler.

A traditional constraint-optimizing scenario
is to assert the constraints and then search for
a solution for all variables, optimizing an ob-
jective function. The scenario of on-line sched-
uling requires repeatedly finding a solution for
only a small subset of the variables, such as
those in the sheet plan to be executed next.
While this solution should be part of an opti-
mal solution for all variables (all known
sheets), we want to keep the other variables
open in case more information about future
sheets becomes available. In other words, the
optimizer is to return a solution for the next
sheet only, but guarantee that it is part of a cur-
rently optimal solution for all known sheets.
We found that this approach, full optimization
with minimal commitment, leads to the best
overall productivity in an on-line scenario (on
average about 5% worse than the theoretical
optimum for randomly generated jobs). This
idea can be encapsulated in a new enumera-
tion primitive that generates an optimal solu-
tion for all variables, but instantiates only
those variables that have to be returned for ex-
ecution of the next sheet plan (Fromherz and
Carlson 1993).

The scheduler has been tested successfully
for configurations with as many as 12 machine
modules, between 2 and 40 capabilities each,
for a total of thousands of system capabilities
(ways of producing printed sheets). Several
characteristics of our application make con-
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