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W Traditional approaches to ecological modeling,
based on mathematical equations, are hampered
by the qualitative nature of ecological knowledge.
In this article, we demonstrate that qualitative rea-
soning provides alternative and productive ways
for ecologists to develop, organize, and implement
models. We present a qualitative theory of popula-
tion dynamics and use this theory to capture and
simulate commonsense theories about population
and community ecology. Advantages of this ap-
proach include the possibility of deriving relevant
conclusions about ecological systems without nu-
meric data; a compositional approach that enables
the reusability of models representing partial be-
havior; the use of a rich vocabulary describing ob-
jects, situations, relations, and mechanisms of
change; and the capability to provide causal inter-
pretations of system behavior.

hy use qualitative representations
Wfor ecology? A number of textbooks

published recently (for example,
Haefner [1996]; Jorgensen and Bendoricchio
[2001]) show that ecological modeling is al-
most synonymous with mathematical model
building. These models might be precise and
sometimes closely mimic what we believe is
happening in the field, but they often fail to
capture the mechanisms that actually explain
the observed behavior (Gillman and Hails
1997). Moreover, they require numeric data of
good quality, and ecological data are often dif-
ficult to obtain because long-term observations

are required, and experimentation with real
systems is limited. Hence, ecological knowl-
edge is heterogeneous, including both quanti-
tative and qualitative aspects. It is imprecise,
incomplete, qualitative, and fuzzy; is expressed
verbally and diagrammatically; and is, there-
fore difficult to model using a mathematical
approach. As noted by Rykiel (1989), ecologists
have a considerable amount of knowledge “in
their heads” and not many ways to make this
knowledge explicit, well organized, and com-
puter processible. In this article, we show how
qualitative models can be used to address some
of these problems and, thus, become a valu-
able complement for mathematical approach-
es to ecological modeling. After all, many ques-
tions of interest in ecology (especially to
decision makers) can be answered in terms of
“better or worse,” “more or less,” “sooner or
later,” and so on (Rykiel 1989).

Qualitative representations provide a rich
vocabulary for describing objects, situations,
relations, causality, and mechanisms of change
(for example, de Kleer and Brown [1984]; For-
bus [1984]). With this vocabulary, it is possible
to capture commonsense knowledge about
ecological systems and use this knowledge to
automatically derive relevant conclusions
without requiring any numeric data. Another
important feature concerns the idea of using a
compositional approach to enable reusability
(Falkenhainer and Forbus 1991), which is
achieved by constructing libraries of partial-be-
havior descriptions that apply to the smallest
entities relevant within a domain. As larger
systems are built from these basic elements,
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Figure 1. Basic Architecture of the Qualitative Reasoning Engine.

reasoning about the behavior of larger systems
means combining the behavior of these ele-
ments. Thus, we avoid having to develop ded-
icated models for each system encountered. A
third feature of qualitative models, relevant to
ecological modeling, is their ability to provide
causal explanations of system behavior. Deriv-
ing the behavior of a complete system from the
behavior of its constituents facilitates an expla-
nation of the overall behavior in terms of these
constituents. Such explanations are considered
insightful, particularly when the set of partial
models captures a causal account for the be-
havior of the constituents (for example, Forbus
[1988]).

An interesting problem to illustrate the po-
tential of qualitative reasoning for modeling
ecological knowledge comes from the Brazilian
cerrado vegetation. The cerrado is a large bio-
me consisting of a number of different phys-
iognomies (well-defined communities). Ac-
cording to a widely accepted hypothesis,
changes in the fire frequency influence the
composition of the cerrado vegetation. This
succession hypothesis states that bio-diversity
is lost, and the vegetation becomes dominated
by grass species when the fire frequency
increases. When the frequency decreases, the
vegetation changes into forestlike physiog-
nomies. The hypothesis has received support
from different studies (for example, Coutinho
[1990] and Moreira [1992]) and become the ba-
sis for environmental education and manage-

ment decisions about the cerrado. However,
knowledge about succession in the cerrado is
incomplete and imprecise. It mainly provides a
conceptual description of the succession
process. Our goal is to construct models and
run simulations that express this conceptual
knowledge.

In the following section, we first introduce
our qualitative theory of population dynamics.
The implementation of this theory results in a
library of partial models. With this library, sim-
ulations can be created that explain the behav-
ior of populations in terms of the basic process-
es that determine it. We then use this library to
construct models and generate simulations of
typical interaction types between two popula-
tions. Finally, we augment the library with
knowledge about the cerrado physiognomies
and how they are influenced by environmental
factors. The same qualitative theory of popula-
tion dynamics is then used to create simula-
tions of community dynamics, particularly on
how changes in the fire frequency influence the
behavior of the cerrado vegetation. The article
closes with a brief discussion of related work.

A Qualitative Approach to
Population Dynamics
In this section, we introduce qualitative mod-

els of the basic processes that govern the be-
havior of populations. The models are imple-
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Figure 2. Causal Dependencies Capturing Natality as a Basic Process.

mented in GARP (Bredeweg 1992),! a reasoning
engine that takes a compositional modeling
approach (Falkenhainer and Forbus 1991) to
qualitative modeling. The reasoning engine
works on the basis of three main constructs: (1)
scenarios, (2) model fragments, and (3) transi-
tion rules (figure 1). Scenarios specify initial sit-
uations for the simulator to start behavior pre-
diction. Model fragments capture knowledge
about the behavior of system parts and are
used to assemble states of behavior. Assump-
tions can be used to further detail the applica-
bility of a model fragment. Transition rules de-
termine valid transitions between states of
behavior. After selecting a scenario, the engine
proceeds with the prediction task by recursive-
ly consulting the library for applicable model
fragments. This search is exhaustive, and each
consistent subset of model fragments repre-
sents a behavior interpretation that matches
the selected scenario.

Basic Processes

Based on the compositional modeling ap-
proach, an important goal is to construct mod-
el fragments that represent elementary behav-
ioral units. To capture the insights that
ecologists have concerning the behavior of
populations, our starting point is the general
growth equation typically found in ecology
textbooks:

Nof(t + 1) = Nof (t) + (B + Im) — (D + E)

Here, Nof represents the number of individuals
of the population at the beginning (t) and at
the end of some time interval (t + 1). B, D, Im,
E are birth, death, immigration, and emigra-
tion rates, respectively. Although there is great
variability on how these four processes occur
among animal and plant species, ultimately
these are the only mechanisms that cause the
number of individuals to change in any popu-
lation. Notice that B, D, and E are functions of
Nof and that the precise shape of these func-
tions can vary according to the population
type. Immigration (Im), however, seldom de-
pends on the number of individuals already
present in the population.

Now, how can we represent this conceptual
knowledge on population ecology using a
qualitative formalism? We start by applying
the causal dependencies introduced by the
qualitative process theory (Forbus 1984), no-
tably positive and negative direct influences
(I+, I-) and indirect influences (P+, P-) (an in-
direct influence is also referred to as a propor-
tionality). Take, for example, natality. The flow
of individuals being born is typically captured
by an I+, meaning that “there is a flow B (birth
rate) that causes Nof to increase”; thus, {I+(Nof,
B)}. Next, given that the amount of individuals
in reproductive activity is related to the popu-
lation size, we can state that “changes in Nof,
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in a particular direction, cause flow B to change
in the same direction.” This is typically repre-
sented by an indirect influence: {P+(B, Nof)}.
Figure 2 depicts this idea.

Following this approach, we can define four
basic processes: (1) natality, (2) mortality, (3)
immigration, and (4) emigration, each mod-
eled by a separate model fragment. These mod-
el fragments include the following relations:
{I+(Nof, B); P+(B, Nof)}, {I-(Nof, D); P+(D, Nof)};
{I+(Nof, Im)}, and {I-(Nof, E); P+(E, Nof)}, respec-
tively. Notice that there is no indirect influence
from Nof on Im because the immigration rate is
modeled as independent of the population
size.

Defining Quantity Spaces

An important aspect of a qualitative model
concerns the values quantities can have: the
quantity spaces. Quantity spaces in GARP consist
of an ordered set of alternating points and in-
tervals and are defined per quantity. A quantity
space can include zero, which is universal for a
model, meaning that all zeros are equal. Rela-
tionships between other values from different
quantity spaces can be defined using (in)-equal-
ities and correspondences. In each state of be-
havior, all quantity values are represented as
magnitude-derivative pairs: <mag, der>. Most of
the simulations presented in this article use a
three-valued quantity space for the magnitude
of Nof: QS = {zero, normal, max}, referring to
the population does not exist, the population
exists and has “some” size, and the population
has reached its maximum size, respectively (see
also later). Magnitudes of B, D, Im, and E are
represented by the values zero and a positive in-
terval, thus QS = {zero, plus}. Derivatives can
take on values negative, zero, and positive, rep-
resented as QS = {-, 0, +}. Applied to the deriva-
tive of Nof and B, D, Im, and E, these symbols
represent that the population and the rates are
decreasing, stable, or increasing. For example,
Nof = <normal, +> means that the state variable
“number of individuals” has the qualitative val-
ue normal and is increasing.

Determining meaningful qualitative values
for the magnitudes of quantities is a difficult
task when building qualitative models about
populations. Compare, for example, physics,
where landmark values such as melting and boil-
ing points define rather distinct substance behav-
ior, involving different processes (Forbus 1984).
There are not many obvious landmarks that
uniquely characterize qualitative distinct behav-
ior of an ecological system. Even K, the carrying
capacity, as often used in population ecology,
does not really relate to characteristic processes
becoming active or inactive. To enforce a solu-

tion, we use the idea of minimum required varia-
tion (Salles and Bredeweg, 1997). That is, build
quantity spaces such that they facilitate the gen-
eration of all the qualitative distinct states that
are important for understanding the system at
hand. Here, we want to capture the idea that
there is a limit to the population growth; hence,
an upper boundary (landmark) is required: max,
although the real maximum value can change
according to different circumstances. It should
also be possible to express that a population is
extinct or does not exist, hence, a specific lower
boundary, namely, zero. Finally, the size of the
population can be in between these extreme
points, thus a positive interval immediately
above zero to a certain maximum. We refer to
this interval as normal. However, different per-
spectives might require a different range of val-
ues for Nof. For example, to characterize the dif-
ferent kinds of cerrado vegetation, it was
necessary to divide the normal interval into
three subvalues, QS = {zero, low, medium, high,
max} (see the section entitled Communities and
Environmental Factors).

Capturing Additional Knowledge

A flow of individuals, as, for example, modeled
by the natality process, only occurs when a
population exists. Therefore, a distinction
must be made between situations in which a
population exists and in which it does not.
Two model fragments represent these situa-
tions: Nof > zero (there is a population), de-
scribed in the fragment “existing population,”
and Nof = zero (there is no population), de-
scribed in the fragment “nonexisting popula-
tion.” Processes natality, mortality, and emigra-
tion have the model fragment existing
population as a condition and, thus, do not be-
come active when the model fragment nonex-
isting populations is active. The ecological phe-
nomenon known as immigration requires a
special approach. Like the other processes, it
can happen when the existing population frag-
ment is active. We represent this knowledge as
the immigration process. However, sometimes
individuals of a population start to live in a
new space, where the population does not yet
exist, which is considered a special kind of im-
migration, the colonization process. The model
fragment nonexisting population is conditional
for the colonization process to become active.

A different perspective on population
growth can be obtained by aggregating
processes to get a single growth rate. As in most
mathematical models, we define the growth
process as a combination of the four basic
processes, using the intermediate variables In-
flow and Outflow to calculate the quantity



growth rate. The qualitative growth equation
then becomes an implementation of

Inflow = B+ Im

Outflow = D+E

Growth = Inflow — Outflow

The overall population growth is modeled
using a new model fragment, population growth,
which also introduces the causal dependencies
{I+(Nof, Growth) and P+(Growth, Nof)}. Different
from the four basic processes, the growth rate
requires the QS = {minus, zero, plus} to take
care of situations in which Inflow is smaller,
equal, or greater than Outflow.

When a quantity is simultaneously influ-
enced by more than one direct or indirect in-
fluence, their effects are combined by influence
resolution (Forbus 1984). In our case, B and Im
rates are added, but D and E are subtracted
from the derivative of Nof. The final result can
be ambiguous, depending on the relative
amounts of these four rates. Ambiguity is
sometimes seen as a problem of qualitative
models because the missing information can
lead to enormous state graphs predicting a
large number of possible behaviors.? We like to
think of ambiguity as a feature, namely, one
that drives the knowledge acquisition. When
constructing a model, ambiguity can force the
modeler to acquire additional knowledge to
address the ambiguity, for example, by consult-
ing experts. Sometimes this extra knowledge is
unavailable, which can reflect a lack of under-
standing because of theoretical issues or point
out the need for specific (empirical) research
programs. In other situations, the simulation
model produces a set of legal states the system
can exhibit unless particular values are given to
certain quantities. Here, ambiguity refers to pos-
sible behaviors of a system.

In a knowledge-sharing situation such as ed-
ucation, it is often helpful when the alternative
trajectories of the system can be made insight-
ful to the learner. This insightfulness can be re-
alized using assumptions that implement rela-
tive magnitudes of quantities and, thus, reduce
the ambiguity, making a simulation less com-
plex. An interesting issue in this respect is the
representation of migratory movements that
either occur or do not occur, referred to as open
populations versus closed populations, respective-
ly. To capture this idea, two assumption labels
are defined in our model: (1) open population
and (2) closed population, which are used as
conditions for certain model fragments. Partic-
ularly, the model fragment assume closed-popu-
lation always applies when the closed-popula-
tion assumption is true. It excludes migration
by specifying that Im = E = zero and the de-
rivatives 8Im = OE = 0.

Simulating Single-
Population Behavior

Now, that we have discussed the most impor-
tant model ingredients, let us look at a
simulation. Consider an initial scenario that
introduces the objects biological entity and pop-
ulation and the quantities Nof, B, D, Im, E, In-
flow, Outflow, and Growth, with no values as-
signed to them. It is assumed that the rates B
and D are equal. Based on this scenario, the
simulator produces eight initial states, with
combinations of all the possible values for
these quantities according to their quantity
spaces and the constraints introduced by the
applicable model fragments. These initial states
are defined in terms of the state variable Nof:
{<zero, 0>; <zero, + >; <normal, —>; <normal, 0>;
<normal, + >; <max, —>; <max, 0>; <max, + >}.
Further, simulating does not produce any new
states because all possibilities have already
been found, but it does generate all possible
transitions between these eight states. Figure 3
shows the causal model representing the rela-
tionships between the quantities in state 3 and
the value history diagram for Nof along the be-
havior path: {8 =5 — 1 — 2 — 3 — 6}.3 Black
triangles and balls are used to represent the de-
rivatives of the quantities.

Given the assumption that B equals D, all
the behavior variation in this simulation orig-
inates from changes in the migratory behavior
of the population. Inflow is bigger in states 2, 3,
and 6 (the population grows), but Outflow is
bigger in states 8 and S (the populations be-
comes extinct). In state 1, the population is
nonexistent, and colonization takes place in
state 2. The path depicted in figure 3 thus
shows a maximum-sized population at the
start that becomes extinct. After colonization,
the population increases again to its maximum
size.

Qualitative Models of Interac-
tions between Two Populations

The previous section presented the basis for a
qualitative domain theory of population dy-
namics. This section shows how this theory
can be used to model typical interactions be-
tween populations. Relationships between two
populations of different species can be classi-
fied either on the basis of the mechanism or on
the effects of the interaction. Mechanisms of
interaction take into account particularities of
each species life cycle. If these details are left
out and only the effects are considered, the in-
teractions can be classified using combinations
of the symbols {-, 0, +}. The change in a pop-
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Figure 3. Simulation of a Population’s Behavior, with Undefined Initial Values.

ulation is designated—when it changes in the
opposite direction compared to changes in the
other population. That is, it decreases as the
other population increases, or it increases as
the other population decreases. Second, a pop-
ulation is designated O when it is not influ-
enced. Third, a population is designated +
when it changes in the same direction as the
other population changes. For example, if the
interaction between populations (4, B) is clas-
sified as (+, -), then population B (given the —
sign) decreases when A increases, and A (given
the + sign) decreases when population B de-
creases.

In practice, it can be difficult to establish
whether a population has a negative (or a pos-
itive) influence on another population. Some-
times the effects of an influence change with
time or under different circumstances. It also
can happen that what seems to be negative for
a population has, in fact, a positive effect,
which is especially the case with evolutionary
aspects (for example, a prey population can de-
crease in number but by means of natural se-
lection, survivors develop better adaptive fea-
tures). We address the problem of interactions
between populations as it is traditionally ad-
dressed in textbooks.

Base Model for
Interacting Populations

Suppose there is no interaction at all between
two populations (neutralism). In this case, a
simulation would generate a state graph show-
ing the cross-product of all the possible behav-
iors of each population, as if they were alone.
However, if the two populations interact, ei-
ther in a positive or a negative way, this full set
of behaviors will be reduced. In other words,
modeling an interaction between two popula-
tions means adding extra knowledge in the
form of constraints, causal dependencies, and
so on, that capture behavior-limiting mecha-
nisms as defined by ecologists for each interac-
tion type. Based on Odum (1985), we have im-
plemented interaction models of neutralism
(0, 0), amensalism (0, -), comensalism (0, +),
predation (+, -), symbiosis (+, +), and compe-
tition (-, -) (Salles et al. 2002).

We assume that any interaction between
two populations is established using the basic
population processes. To simplify the simula-
tions, we also assume that both populations
are closed populations (only natality and mor-
tality processes are active), bringing us to a
general organization of all interaction types,
the base model shown in figure 4.4
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Influences from one population (1) on an-
other population (2), and vice versa, are repre-
sented by means of two quantities—(1)
Effectlon2 and (2) Effect2onl, respectively—
which, in turn, affect the B or D rates of both
populations. In the real world, these influences
between populations can be expressed in dif-
ferent ways (for example, increasing shade, of-
fering shelter, producing chemical agents). The
strength of the influence can also increase or
decrease according to different factors other
than the size of the influencing population (for
example, shelter can be more important when
there are more enemies around). To capture
these distinctions in the model, it is important
to use the intermediate quantity Effect.

The interaction is modeled using a number
of indirect influences (P+, P-). Thus, the mag-
nitude of the Effect is proportional to the size of
the population that causes it. In addition,
changes in the B and D rates are proportional
to the magnitude of the Effect that influences
them. The actual influence from Effect on the B
and D rates differs for each interaction type,
hence, the P? symbols. It can be a positive or a
negative interaction, and the Effect can either
influence both B and D, only one of the two
rates, or none of them. Notice the semantics of
the dependencies. For example, a positive in-
fluence from population2 on population1 can
be represented as {P-(D1, Effect2onl) and/or
P+(B1, Effect2onl)).

Defining Interaction Types

To capture the behavior-limiting mechanisms
for each interaction type (following Odum
[1985]), modeling has to focus on the follow-
ing aspects:

First is defining the Effect quantities that rep-
resent the interaction. For example, in the case
of predation, the “effect” of the predator on
the prey can be called consumption and the ef-
fect the prey has on the predator supply.

Second is establishing causal links between
the quantities Nof, Effect, B, and D for both pop-
ulations. Does Effect influence both B and D?
Are they positive or negative influences? Notice
that it follows from the base model that the in-
fluence from Nof on Effect is always positive.

Third is defining assumptions that imple-
ment correspondences and possibly other con-
straints between the quantities Nof, Effect, B,
and D. For example, a simplifying assumption
that we used in all the interaction models is the
full correspondence between the Nof and the
effect it causes. That is, the effect takes the
same values as the Nof.

Fourth is representing conditions for nonex-
isting populations. With interactions, the
nonexistence of a population can have an in-
fluence on the behavior of the other popula-
tion, requiring reasoning about something (a
population) that does not exist in the real-
world system. For example, in our predation
model, we assume that a predator population

WINTER 2003 83



Articles

immigrated2

O—(Ceniesz )

outflow2

84 AI MAGAZINE

Figure 5. Causal Model for Predation.

cannot survive when the prey population goes
extinct.

A separate set of model fragments capturing
the points mentioned here is implemented for
each interaction type. For details, see Salles et
al. (2002).

Simulating Predation

A simulation with the predation model (+ ,-)
can be used to illustrate some of the points.
Figure 5 shows the causal model that holds in
most of the states during the simulation.®
States 5, 6, 7, and 8 have different causal mod-
els because in these states, at least one of the
populations does not exist (see also discussion
later). Notice that quantities with extension 1
refer to the predator, and those with extension
2 refer to the prey population.

For both populations, Im = E is true because
of the closed-population assumption. It is as-
sumed that Supply influences both natality and
mortality of the predator, but Consumption in-
fluences only mortality of the prey. The state
graph and the value history diagram shown in
figure 6 are the result of a simulation starting
with a scenario in which both populations
have their normal size and an unknown direc-
tion of change; thus, Nof = <normal, 7>.

One of the assumptions included in this
simulation is that the predator population can-
not become bigger than the prey population,
thus limiting the number of states generated

by the simulator. Four interpretations are
found for the initial scenario: states 1, 2, 3, and
4. Each of these states is the start of a subgraph
representing one of four typical behaviors of a
predator-prey system: (1) balanced cooexis-
tence, (2) populations to a maximum, (3) pop-
ulations to extinction, and (4) predator to ex-
tinction.

Balanced coexistence: In state 2, the two
populations have a natural balance; they coex-
ist without further changes.

Populations to a maximum: State 1 leads
to 10, optionally by 11, and shows the case in
which both populations grow to their maxi-
mum size. Notice that the prey can reach its
maximum size before the predator does (state
11) but not the other way around.

Populations to extinction: State 4 leads to
6, optionally by 5, and shows the case in which
both populations disappear. The path using
state 5 shows that the predator can become ex-
tinct before the prey but not the other way
around.

Predator to extinction: Finally, state 3 leads
to 8, optionally by 7 or 9. It shows that the
predator no longer exists, but the prey popula-
tion is still alive. Notice that the opposite is not
possible.

By modifying assumptions (for example, al-
lowing the predator population to become big-
ger than the prey population), different simu-
lations are produced. In fact, the qualitative
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Figure 6. A Simulation with the Predation Model.

models presented here are rich in this respect,
which makes them particularly interesting for
studying and understanding different types of
interaction. Understanding such interactions is
important for establishing knowledge about
the structure and behavior of communities,
which, in turn, is important for answering the-
oretical and practical questions in educational
and training situations.

Communities and
Environmental Factors

This section presents the application of our
qualitative domain theory about population
dynamics for modeling complex community
behavior, particularly the influence of envi-
ronmental factors on terrestrial communities.
Our models focus on succession in the Brazil-
ian cerrado vegetation. This vegetation con-
sists of many different physiognomies, span-
ning from open grasslands to rather closed
forests. These communities have well- defined
floristic composition mainly determined by
fire, soil fertility, and water availability. Accord-
ing to a widely accepted commonsense hy-
pothesis, changes in fire frequency can cause
structural changes in the cerrado vegetation
(for example, Coutinho [1990] and Moreira
[1992]). If fire frequency increases beyond nat-
ural levels, woody components of Cerrado
communities decrease, and graminoid compo-
nents increase, so that the vegetation becomes
less dense. If fire frequency decreases, the veg-
etation tends to become woody and denser. We

refer to these increases and decreases as the cer-
rado succession hypotheses (CSH). Experts ex-
plain the succession behavior in terms of dif-
ferences between tree and grass species.
Germination and survival of young plants of
tree species are more likely in shaded, cold, and
moist microenvironments, but grass species do
better in brighter, warmer, and dryer microen-
vironments.

A fully implemented qualitative model of
CSH is presented in Salles and Bredeweg
(1997). This model captures a conceptual ex-
planation of the cerrado community behavior,
as developed by experts. In this model, the veg-
etation is represented by functional groups of
plants with similar behavior when exposed to
certain environmental factors. With this ap-
proach, cerrado communities consist of three
populations: tree (T), shrub (S), and grass (G).
The qualitative domain theory about popula-
tion dynamics discussed earlier can be applied
to these populations.

Cerrado Community Types

Different proportions of grass, shrubs, and
trees characterize the different types of cerrado
communities. To capture this diversity in our
model, the quantity Nof has been given a five-
valued quantity space, QS = {zero, low, medi-
um, high, max}. Model fragments are used to
represent the community types (figure 7). The
most important ones are campo limpo, campo
sujo, campo cerrado, cerrado sensu stricto, and
cerradao. This sequence presents a gradient in
which campo limpo has no trees and no
shrubs, only grass. At the opposite end, cer-
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Figure 7. Overview of the Most Typical Cerrado Communities.

raddo is the most dense forest, with no grass,
only tree and shrub populations. In between
these types, there are communities with in-
creasing amounts of shrub and trees and less
grass. The cerrado sensu lato model fragment
represents environmental factors that apply to
all community types.

Causal Model of the
Cerrado Succession Hypotheses

The causal dependencies are shown in figure 8.
In this figure, number_ofl (Nof1) refers to the
tree population, number_of2 (Nof2) to shrubs,
and number_of3 (Nof3) to grass. The most im-
portant quantities in the model are fire fre-
quency, litter, moisture, light, soil temperature,
and nutrient. These quantities are related to
each other by proportionalities (P+, P-) and
build a causal chain by means of which fire fre-
quency affects litter, which, in turn, affects the
four other quantities. An additional set of
model fragments encodes knowledge about
how these environmental factors affect the ba-
sic processes in the three populations. Tree and
shrub populations are influenced differently by
light and soil temperature compared to the
grass population. For example, in tree and
shrub populations, light has a positive influ-
ence on the mortality process, thus {P+(D,
Light)}, but in the grass population, this influ-
ence is negative: {P-(D, Light)}. The influences,
ultimately caused by the fire frequency, are fur-
ther strengthened by a positive feedback loop
involving cover, a quantity that represents the

shade of trees; hence, {P+(Cover, Nof1)}.

Control over fire frequency is modeled as a
human action, using the notion of an agent
model (Bredeweg 1992). In this case, the agent
model puts a direct negative influence on the
quantity fire frequency by means of a quantity
(rate) called control, thus {I-(Fire-frequency, Con-
trol)}. Quantity control rate has a tree-valued
quantity space: QS = {min, zero, plus}, repre-
senting a negative, an ineffective, and a posi-
tive control, respectively. Two versions of this
agent model are implemented in the model:
(1) decrease fire frequency (a positive control so
that Control = <plus, 0>) and (2) increase fire
frequency (a negative control so that Control =
<min, 0>). The effect is assumed to be constant
during a simulation.

Simulating the Cerrado Succession
Hypothesis

Simulations with this model show, as expected,
the transitions between the community types
caused by control measures on fire frequency.
For example, it is possible to simulate that
when the fire frequency is decreased, a com-
munity of campo limpo can change to campo
sujo because the grass population (Nof3) de-
creases, but shrub (Nof2) and tree (NofI) popu-
lations increase. If the conditions stay the
same, campo sujo becomes denser and changes
toward different communities until the most
dense community is reached (climax cerraddo).
Figure 9 shows this behavior graph and the val-
ue history diagram for the three populations.
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Figure 8. Causal Dependencies for the Cerrado Succession Hypothesis.

Succession can be illustrated following the be-
havior path: campo limpo (states 1 and 4),
campo sujo (state 5), campo cerrado (state 12),
cerrado sensu stricto (state 13), open cerradao
(state 15), and climax cerraddo (state 16). The
grass population tries to enter again using col-
onization (transition from 16 to 18). However,
this colonization does not lead to new states
(there are no successors of state 18) because the
grass population cannot grow unless shrub and
tree populations decrease. Notice that by set-
ting different initial values, we can also simu-
late alternative behaviors. For example, impos-
ing a negative control (increasing fire
frequency) on a climax cerraddo community
produces a simulation showing the degrada-
tion behavior in which the closed forest is re-
duced to open grassland (campo limpo).

Status and Implementation

The CSH model is a large qualitative model.
Consider, for example, state 12, the campo cer-
rado community. This state is described by
means of 61 model fragments, including 19 ac-
tive processes. These model fragments intro-
duce 20 objects, which are associated with 32
quantities constrained by 127 different rela-
tions. The current implementation of the mod-
els described in this article includes nearly a

hundred initial scenarios. By changing the ini-
tial values of quantities (magnitudes and deriv-
atives) and modeling assumptions, this num-
ber can easily be augmented without
introducing any further knowledge to the li-
brary. The resulting simulations are conceptual
models that capture considerable amounts of
ecological knowledge as articulated by domain
experts.

Related Work

Representing qualitative knowledge has long
been an outstanding problem in ecological
modeling. Pivello and Coutinho describe a pre-
liminary prototype that models the succession
phenomenon in the cerrado.® They use a typi-
cal rule-based approach in which rules specify
the conditions for state transitions between the
different types of cerrado vegetation. They
identified 11 types of communities and 42 pos-
sible transitions, corresponding to fire, grazing,
and woodcutting under different environmen-
tal conditions. The resulting model is qualita-
tive, in the sense that it does not use any nu-
meric data, and simple enough to be
understood and used by managers of cerrado
conservation areas. However, as is typical for
rule-based systems, the knowledge represented
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Figure 9. Simulation with the Cerrado Succession Hypothesis.

in the rule base is shallow and does not imple-
ment the underlying principles that actually
explain the working of the succession phe-
nomenon.

Noble and Slatyer (1980) address qualitative
aspects when they discuss community dynam-
ics subject to recurrent disturbance (such as
fire), based on a small number of attributes of
the plant’s life history (vital attributes). Their
simulations typically produce a replacement

sequence that depicts the major shifts in com-
position and dominance of species following a
disturbance. Moore and Noble (1993, 1990)
combined this approach with knowledge
about the abundance of the populations and
their survival to describe which of the several
species, at a comparable life stage, might be
dominant in terms of bio-mass or density.
However, these aspects are handled using
mathematical models, and only the final out-



put is presented in qualitative terms such as
{low, medium, high}.

Only a few researchers have tried using a full
qualitative approach. Guerrin and Dumas
(2001a, 2001b) discuss models representing the
functioning of salmon spawning areas and the
impact this phenomenon has on mortality in
early stages. They successfully used Qsim
(Kuipers 1986) to generate qualitative predic-
tions on the survival rate of salmon under var-
ious scenarios. Kamps and Péli (1995) present a
population-oriented approach to model eco-
nomical phenomena. They constructed a qual-
itative version of the logistic equation, using
GARP (Bredeweg 1992), to model the dynamics
(natality and mortality) of companies. May
(1973) describes a model that uses only the
signs {-,0, +} to represent the dynamics of pop-
ulations connected in a food web using inter-
actions such as predation, competition,
amensalism, comensalism, and symbiosis. He
shows that commonsense wisdom might not
be true: A less complex community met the
conditions for stability, but the more complex
was not stable.

Conclusion and Discussion

This article describes long-term research on the
development of qualitative models and simula-
tions about ecological systems involving popu-
lation and community dynamics. To capture
and simulate commonsense ecological theories,
as articulated by experts, we have developed
and implemented a qualitative theory of popu-
lation dynamics. This theory is used as the basis
for simulating models of typical interaction
types between two populations. It is also used
to express how environmental factors influence
the behavior and composition of vegetation
communities. Specifically, we show how predic-
tions for the Brazilian cerrado community, fol-
lowing from the CSH, can be generated using
partial models of the basic processes that gov-
ern the behavior of the individual populations.

Combining partial models to scale up to
more complex models is a desirable feature in
ecological modeling. A compositional ap-
proach enabling reusability of previously de-
fined parts provides the modeler with the pos-
sibility to gradually increase the complexity of
the models. Moreover, it facilitates the repre-
sentation of fundamental knowledge that can
be used to simulate and explain more complex
phenomena.

The models presented here are conceptual
models and do not require any numeric data.
The qualitative representation provides a rich
vocabulary for describing objects, situations,

causality, and mechanisms of change. This vo-
cabulary can be used to express knowledge that
is, in general, difficult to represent using a
mathematical approach. The results produced
by simulating these models show that conclu-
sions relevant to ecologists can be derived au-
tomatically using only qualitative knowledge.
This important characteristic demonstrates the
potential of qualitative models as a valuable
complement for mathematical approaches to
ecological modeling.

Future work on qualitative ecological model-
ing has many interesting possibilities. One of
our themes focuses on further developing and
applying our approach to represent the behav-
ior of other large communities. Ongoing work
also includes the development of tools to sup-
port educational and management activities
based on articulate simulations, notably on ter-
restrial ecology and water resources manage-
ment. Particularly, we have developed guide-
lines for constructing learning routes through
complex qualitative simulations to support
learners in understanding and acquiring the
knowledge captured in such models (Salles and
Bredeweg 2001). In Salles, Bredeweg, and
Winkels (1997), the authors describe how ex-
planations can be generated, as part of an in-
teractive dialogue, using the didactic principles
and discourse strategies developed by Winkels
(1992). We believe that it is important to work
simultaneously on both knowledge capturing
and knowledge sharing because knowledge
sharing determines the degree of articulateness
required in knowledge capturing. After all, an
important consequence of knowledge articula-
tion is the common desire of wanting to share
the newly created insights with others.
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Notes

1. Software and models can be downloaded from
www.swi.psy.uva.nl/projects/GARP/.

2. Behaviors resulting from ambiguity should not be
confused with spurious behaviors (for example,
Kuipers [1986]). Spurious behaviors refer to incorrectly
predicted behaviors that do not occur for the real sys-
tem. Ambiguity refers to alternative correct behaviors
predicted because information is lacking.

3. All simulation results are shown using VisSIGARP
(Bouwer and Bredeweg 2001). VisiGARr implements a
graphic user interface on top of GARp.

4. All quantities with extension 1 belong to popula-
tion 1 and with extension 2 to population 2.

5. Notice that figures 3 and 5 originate from the same
VisiGARrp view on the simulation, although less infor-
mation is shown in figure 5.
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6. Pivello, V. R., and Coutinho, L. M. 1995. A Succes-
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