
■ A wide range of sensor-rich, networked embedded
systems are being created that must operate ro-
bustly for years in the face of novel failures by
managing complex autonomic processes. These
systems are being composed, for example, into
vast networks of space, air, ground, and underwa-
ter vehicles. Our objective is to revolutionize the
way in which we control these new artifacts by cre-
ating reactive model-based programming lan-
guages that enable everyday systems to reason in-
telligently and enable machines to explore other
worlds. A model-based program is state and fault
aware; it elevates the programming task to specify-
ing intended state evolutions of a system. The pro-
gram’s executive automatically coordinates system
interactions to achieve these states,  entertaining
known and potential failures, using models of its
constituents and environment. At the executive’s
core is a method, called CONFLICT-DIRECTED A*,
which quickly prunes promising but infeasible so-
lutions, using a form of one-shot learning. This ap-
proach has been demonstrated on a range of sys-
tems, including the National Aeronautics and
Space Administration’s Deep Space One probe.
Model-based programming is being generalized to
hybrid discrete-continuous systems and the coor-
dination of networks of robotic vehicles. 

The Criticality of 
Fault-Aware Systems

The demands we place on robotic explorers
and everyday embedded systems have
gone through a major transformation over

the last decade. For example, the challenge of ro-
botic space exploration has dramatically shifted
from simple planetary flybys to microrovers that
can alight on several asteroids, collect the most

interesting geologic samples, and return with
their findings. This challenge will not be an-
swered through billion-dollar missions with
100-member ground teams but through innova-
tion. Future space exploration will be enabled in
significant part by inexpensive, “fire-and-forget”
space explorers that are self-reliant and capable
of handling unexpected situations; they must
balance curiosity with caution.

Self-reliance of this sort can only be
achieved through an explicit understanding of
mission goals and the ability to reason from a
model of how the explorer and its environ-
ment can support or circumvent these goals.
This knowledge is used to carefully coordinate
the complex network of sensors and actuators
within the explorer. Given the complexity of
current and future spacecraft, such fine-tuned
coordination seems to be a nearly impossible
task using traditional software engineering ap-
proaches.

Our demand for this level of fault resilience
is no longer isolated to the realm of exotic
space explorers. It has shifted to systems that
are part of our everyday activities, such as our
houses and automobiles (Williams and Nayak
1996b). Automobile manufacturers are now
envisioning automobiles that address traffic
congestion by operating cooperatively and
that are perceived to never fail. Two decades of
deregulation have placed much of the U.S.’s
critical embedded infrastructure on open net-
works, including the telephone system, the in-
ternet, and power networks. Opening these
systems exposes society to new levels of vul-
nerability to natural and manmade disasters.
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TITAN is CONFLICT-DIRECTED A*, a method for solv-
ing that quickly prunes away sets of candidate
solutions, using a form of one-shot learning
until the best feasible solution is found (see Ef-
ficient Online Reasoning through CONFLICT-DI-
RECTED A*). In addition, we briefly highlight two
other model-based executives: (1) MORIARTY,
which is used to monitor, diagnose, and con-
trol hybrid discrete-continuous systems (see
Model-Based Programming of Hybrid Systems),
and (2) KIRK, which coordinates networks of ro-
botic vehicles (see Model-Based Programming
of Robotic Networks). 

Programming in 
Terms of Hidden State

Formal verification has long held promise for
ensuring the robustness of embedded software.
A major concern is the gap between the speci-
fications about which we prove properties and
the programs that are supposed to implement
them. Manual translation across this gap intro-
duces the danger of bugs. To close this gap,
Berry (1989) emphasizes executable specifica-
tions within the ESTEREL embedded language:
“What you prove is what you execute.” In
model-based programming, we carry the idea
of executable specification one step further by
offering an executable specification language
that operates on descriptions of abstract hid-
den states, reasons through physical models in
real time, and is knowledgeable of a system’s
fault behavior.

Engineers like to reason about embedded
systems in terms of state evolutions, providing
the engineer with a simple abstraction that ig-
nores issues of controllability and observabili-
ty. However, executable specification lan-
guages, such as ESTEREL and STATECHARTS (Harel
1987), interact with a physical plant by reading
sensor variables and writing control variables
(figure 1a). It is the programmer’s responsibili-
ty to close the gap between intended state and
the sensors and actuators. This mapping in-
volves reasoning through a complex set of in-
teractions under a range of possible failure sit-
uations. The complexity of the interactions
and the number of possible scenarios make this
process error prone. 

A model-based programming language is an ex-
ecutable specification language similar to ESTER-
EL or STATECHARTS but with the additional fea-
ture that it is state aware; that is, it interacts
directly with the plant state (figure 1b). This is
accomplished by allowing the programmer to
read or write constraints on “hidden” state
variables in the plant, that is, states that are not
directly observable or controllable. It is then

Traditionally, closed systems are carefully pro-
tected only at their perimeter and are particu-
larly vulnerable to failure or malicious attacks
that originate within their perimeter. To be ro-
bust, open networked systems cannot leave
their guard down along any front. They must
quickly detect and recover from a malfunction
in, or intrusion by, any of their constituents.
This level of vigilance is common to space mis-
sions, which have repeatedly succeeded despite
a multitude of hardware failures by using fault-
management systems that continuously detect
and recover from faulty components.

To achieve these new levels of vigilance,
safety, and adaptivity, we must fundamentally
rethink how we program embedded systems.
We confront these challenges through an auto-
mated reasoning and programming paradigm
called model-based autonomy. In this paradigm,
embedded systems are easily programmed by
specifying strategic guidance in the form of a
few high-level control behaviors, called model-
based programs (Williams et al. 2003) (see Pro-
gramming in Terms of Hidden State). These
control programs, along with a commonsense
model of its hardware and its environment, en-
able an embedded system to control and mon-
itor its hidden state according to the strategic
guidance. To respond correctly in novel, time-
critical situations, our systems use their on-
board models to perform extensive common-
sense reasoning within the reactive control
loop, something that conventional AI wisdom
had suggested was not feasible. Systems that
execute model-based programs are called mod-
el-based executives. We focus on an executive,
called TITAN, used to robustly coordinate the
network of devices internal to a high-perfor-
mance embedded system (see Model-Based Ex-
ecution of Automatic Processes). At the core of
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the responsibility of the language’s execution
kernel to map between hidden states and the
plant sensors and control variables. This map-
ping is performed automatically by using a de-
ductive controller that reasons from a com-
monsense plant model. To be robust, this
mapping must succeed under failure; hence,
the deductive controller must reason exten-
sively from models of correct and faulty com-
ponent failure. Given the exponential space of
potential symptoms, diagnoses, and recoveries,
some of this reasoning must be performed on-
line. In this article, we introduce the REACTIVE

MODEL-BASED PROGRAMMING LANGUAGE (RMPL), a
programming framework that supports model-
based execution from hybrid systems to robot-
ic networks. 

Model-Based Programming
A model-based program comprises two com-
ponents. The first is a control program, which
uses standard programming constructs to cod-
ify specifications of desired system behavior.
In addition, to execute the control program,
the execution kernel needs a model of the sys-
tem it must control. Hence, the second com-
ponent is a plant model, which includes mod-
els of the plant’s nominal behavior and
common failure modes. This modeling formal-

ism, called probabilistic concurrent constraint au-
tomata, unifies constraints, concurrency, and
Markov processes.

For example, consider the task of inserting a
spacecraft into orbit around a planet. Our
spacecraft includes a science camera and two
identical redundant engines, engines A and B
(figure 2). An engineer thinks about this ma-
neuver in terms of state trajectories: 

Heat up both engines (called standby
mode). Meanwhile, turn the camera off to
avoid plume contamination. When both
are accomplished, thrust one of the two
engines, using the other as backup in case
of primary engine failure. 

This specification is far simpler than a con-
trol program that must turn on heaters and
valve drivers, open valves, and interpret sensor
readings for the engine. Thinking in terms of
more abstract hidden states makes the task of
writing the control program much easier and
avoids the error-prone process of reasoning
through low-level system interactions. In addi-
tion, it gives the program’s execution kernel
the latitude to respond to failures as they arise,
which is essential for achieving high levels of
robustness. 

Next, consider a model-based program corre-
sponding to this specification. The spacecraft
dual main engine system (figure 2) consists of
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Figure 2. Simple Spacecraft for Orbital Insertion.
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Second, these state assignments appear as both
assertions and execution conditions. For exam-
ple, in lines six to nine, EngineA = Firing ap-
pears in an assertion (line 8), and EngineA =
Standby, Camera = Off, and EngineA = Failed
appear in execution conditions (lines 7 and 9).
Third, none of these state assignments are di-
rectly observable or controllable; that is, only
shutter position and acceleration can directly
be sensed, and only the flight computer com-
mand can directly be set. Finally, by referring
to hidden states directly, the RMPL program is
far simpler than the corresponding traditional
program, which operates on sensed and con-
trolled variables. The added complexity of the
traditional program is because of the need to
fuse sensor information and generate com-
mand sequences under a large space of possible
operation and fault scenarios.

For example, consider how a traditional
program achieves the lone assignment En-
gineA = Firing. From a large space of options,
the program must first select a set of healthy
valves whose opening will achieve thrust. To
select the appropriate valves, the program en-
codes a decision tree that assesses the health of
the valves by fusing multiple sources of sensor
data. Next, the selected valves are opened us-
ing a valve-open procedure. This procedure
must send commands over a communication
bus to a valve driver, which then opens the
valve. The procedure involves another deci-
sion tree that is able to detect and recover
from any failures along this path, again by ex-
ploiting redundancy.

This example demonstrates that the code
needed to achieve even a simple hidden state
assignment can quickly explode. Writing this

two propellant tanks, two main engines, and
redundant valves. The system offers a range of
configurations for establishing propellant
paths to a main engine. When the propellants
combine within the engine, they produce
thrust. The flight computer controls the engine
and camera by sending commands. An ac-
celerometer sensor, for example, is used to con-
firm engine operation by sensing thrust, and a
camera shutter position sensor is used to con-
firm camera operation. 

Control Program
The RMPL control program (figure 3) codifies the
informal specification we gave earlier as a set of
state trajectories. RMPL provides standard em-
bedded programming constructs, such as paral-
lel and sequential execution, iteration, condi-
tions, and preemption. Recall that to perform
orbital insertion, one of the two engines must
be fired. We start by concurrently placing the
two engines in standby and shutting off the
camera, which is performed by lines three to
five; the comma at the end of each line denotes
parallel composition. We then fire an engine,
choosing to use engine A as the primary engine
(lines 6–9) and engine B as a backup in the
event that engine A fails to fire correctly (lines
10–11). Engine A starts trying to fire as soon as
it achieves standby, and the camera is off (line
7) but aborts if at any time engine A is found to
be in a failure state (line 9). Engine B starts try-
ing to fire only if engine A has failed, B is in
standby, and the camera is off (line 10). 

Several features of this control program rein-
force our earlier points. First, the program is
stated in terms of state assignments to the en-
gines and camera, such as EngineB = Firing.
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Figure 3. RMPL Control Program for Orbital Insertion.

1  OrbitInsert():: {
2 do
3        {EngineA = Standby,
4         EngineB = Standby,
5         Camera = Off,
6         do
7             when EngineA = Standby AND Camera = Off 
8                 donext EngineA = Firing
9         watching EngineA = Failed, 
10       when EngineA = Failed AND EngineB = Standby AND Camera = Off 
11           donext EngineB = Firing}
12  watching EngineA = Firing OR EngineB = Firing  
13 }



type of code is tedious. In this situation, the
programmer can inadvertently introduce a
software bug or miss an important case that
puts the mission at risk. For example, the Mars
Polar Lander mission was most likely lost when
a buggy software monitor incorrectly classified
a noise spike on one of the lander’s legs as an
indication of touchdown. The lander then shut
off its engine roughly 40 meters above the sur-
face (Young et al. 2000). In contrast, in model-
based programming, the control program is a
compact specification of intended state evolu-
tion that is executed by provably correct syn-
thesis procedures, using knowledge of failure
provided by a compact, reusable plant model. 

Plant Model
The plant model represents a system’s normal
behavior and its known and unknown aber-
rant behaviors. It is used by a deductive con-
troller to map sensed variables to queried states
in the control program and asserted states to
specific control sequences. The plant model is
specified as a concurrent transition system,
composed of probabilistic concurrent con-
straint automata (Williams and Nayak 1996a).
Each component automaton is represented by
a set of component modes, a set of constraints
defining the behavior within each mode, and a
set of probabilistic transitions between modes.
Constraints are used to represent cotemporal
interactions between state variables and inter-
communication between components. Con-
straints on continuous variables operate on

qualitative abstractions of the variables, com-
prised of the variable’s sign (positive, negative,
zero) and deviation from nominal value (high,
nominal, low). Probabilistic transitions are
used to model the stochastic behavior of com-
ponents, such as failure and intermittency. Re-
ward is used to assess the costs and benefits as-
sociated with particular component modes.
The component automata operate concurrent-
ly and synchronously.

For example, we can model the spacecraft
abstractly as a three-component system (two
engines and a camera) by supplying the mod-
els depicted graphically in figure 4. Nominally,
an engine can be in one of three modes: (1) off,
(2) standby, or (3) firing. The behavior within
each of these modes is described by a set of
constraints on plant variables, namely, thrust
and power_in. In figure 4, these constraints are
specified in boxes next to their respective
modes. The engine also has a failed mode, cap-
turing any off-nominal behavior. We entertain
the possibility of a novel engine failure by
specifying no constraints for the engine’s be-
havior in the failed mode (Davis 1984). 

A wide range of plant-modeling formalisms
is possible, depending on the category of sys-
tem being controlled. These formalisms define
different families of model-based program-
ming languages. For example, in Hofbaur and
Williams (2002), the plant models are repre-
sented as a hybrid between hidden Markov
models (HMMs) and continuous dynamics to
detect and handle incipient failures. In
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starts by generating a configuration goal con-
sisting of the conjunction of three state assign-
ments: (1) EngineA = Standby, (2) EngineB =
Standby, and (3) Camera = Off (lines 3–5). To
determine how to achieve this goal, the deduc-
tive controller considers the latest estimate of
the state of the plant. For example, suppose the
deductive controller determines from its sensor
measurements and previous commands that
the two engines are already in standby, but the
camera is on. The deductive controller deduces
from the model that it should send a com-
mand to the plant to turn the camera off. After
executing this command, it uses its shutter po-
sition sensor to confirm that the camera is off.
With Camera = Off and EngineA = Standby, the
control sequencer advances to the configura-
tion goal of EngineA = Firing (line 8). The de-
ductive controller identifies an appropriate set-
ting of valve states that achieves this behavior,
then it sends out the appropriate commands.

In the process of achieving goal EngineA =
Firing, assume that a failure occurs: An inlet
valve to engine A suddenly sticks closed. Given
various sensor measurements (for example,
flow and pressure measurements throughout
the propulsion subsystem), the deductive con-
troller identifies the stuck valve as the most
likely source of failure. It then tries to execute
an alternative control sequence for achieving
the configuration goal, for example, by repair-
ing the valve. Presume that the valve cannot be
repaired; TITAN diagnoses that EngineA = Failed.
The control program specifies a configuration
goal of EngineB = Firing as a backup (lines
10–11), which is issued by the control se-
quencer to the deductive controller. 

Mode Estimation
Mode estimation incrementally tracks the set of
state trajectories that are consistent with the
plant model, the sequence of observations, and
control actions. For example, suppose the de-
ductive controller is trying to maintain the
configuration goal EngineA = Firing, as shown
to the left in figure 6. Here, we assume that
mode estimation starts with knowledge of the
initial state, with valves opening a flow of oxi-
dizer and fuel to engine A. In the next time in-
stant, the sensors send back the observation
that Thrust = zero. Mode estimation then iden-
tifies a number of state transitions that are con-
sistent with this observation, including either
the inlet valve into engine A has transitioned
to stuck closed, as depicted on the right in fig-
ure 6, or any combination of valves along the
fuel or oxidizer supply path is broken. 

We frame mode estimation as an instance of
belief state update for an HMM. It incremental-

Williams, Chung, and Gupta (2001), the plant
models are described using a hybrid of hierar-
chical automata and constraints to monitor ro-
botic networks. 

Model-Based Execution of 
Autonomic Processes

A model-based program is executed by auto-
matically generating a control sequence that
moves the physical plant to the states specified
by the control program (figure 5). We call these
specified states configuration goals. Program ex-
ecution is performed using a model-based exec-
utive, which generates configuration goals and
then generates a sequence of control actions
that achieve each goal based on knowledge of
the current plant state and model. 

A model-based executive consists of two
components: (1) a control sequencer and (2) a
deductive controller. The control sequencer is re-
sponsible for generating a sequence of config-
uration goals, using the control program and
plant state estimates. Each configuration goal
specifies an abstract state for the plant to
achieve. The deductive controller is responsible
for estimating the plant’s most likely current
state based on observations from the plant
(mode estimation) and issuing commands to
move the plant through a sequence of states
that achieve the goals (mode reconfiguration).

Consider a model-based executive, called TI-
TAN, which coordinates the low-level autonom-
ic processes internal to an embedded system.
When TITAN executes the orbital insertion con-
trol program (figure 3), the control sequencer
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ly computes the probability of state si at time
t+1 using a combination of forward prediction
from the model and correction based on the
observations 

where P
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states is exponential in the number of compo-
nents, which reaches a trillion states for even
our simple example. Hence, mode estimation
enumerates the consistent trajectories and
states in order of likelihood using an efficient
procedure called CONFLICT-DIRECTED A*, de-
scribed later. Mode estimation offers an any-
time approach, which stops enumeration
when no additional computational resources
are available.

Mode Reconfiguration
Mode reconfiguration takes as input a configura-
tion goal g(t), and the most likely current state
s(t) computed by mode estimation, and returns
a series of commands that progress the plant
toward a maximum-reward goal state that
achieves g(t) (Williams and Nayak 1997). Mode
reconfiguration accomplishes this using a goal
interpreter and a reactive planner. A goal inter-
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configuration is a simple matter of calling a set
of open-valve and close-valve routines. In fact,
this is how TITAN’s predecessor, LIVINGSTONE

(Williams and Nayak 1996a), performed mode
reconfiguration. However, much of the com-
plexity of mode reconfiguration is involved in
correctly commanding each component to its
intended mode through lengthy communica-
tion paths. For example, figure 8 shows the
communication paths to a spacecraft main en-
gine system. The flight computer sends com-
mands to a bus controller, which broadcasts
these commands over a 1553 bus. These com-
mands are received by a bank of device drivers,
such as the propulsion drive electronics (PDE).
Finally, the device driver for the appropriate de-
vice translates the commands to analog signals
that actuate the device. 

A robust close-valve routine should be able
to handle the following example scenario.
The corresponding procedure is automatical-

preter determines a target state sg
(t) that is reach-

able from s(t) and achieves g(t), maximizing re-
ward. It accomplishes this by having CONFLICT-
DIRECTED A* search over the reachable states in
best-first order. A reactive planner generates a
command sequence that moves the plant from
s(t) to sg

(t). A reactive planner generates and exe-
cutes this sequence one command at a time,
using mode estimation to confirm the effects
of each command. 

For example, in our orbital insertion exam-
ple, given a configuration goal of EngineB =
Firing, the goal interpreter selects a set of
valves to open that establish a flow of fuel to
the engine (bottom left, figure 7). The reactive
planner sends commands to control units, dri-
vers, and valves to achieve this target. 

Model-Based Reactive Planning
Having identified which valves to open and
close, one might imagine that achieving the
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Configuration Goal: Spacecraft = Thrusting

Figure 7. The Goal Interpreter Uses CONFLICT-DIRECTED A* to Search for a Mode Reconfiguration during Orbital Insertion..



ly generated by TITAN’s reactive planner: 

To ensure that a valve is closed, the close-
valve routine first ascertains if the valve is
open or closed by polling its sensors. If it
is open, it broadcasts a close command.
However, first it determines if the driver
for the valve is on, again by polling its
sensors, and if not, it sends an on com-
mand. Now suppose that shortly after the
driver is turned on, it transitions to a re-
settable failure mode. The valve routine
catches this failure, and then before send-
ing the close command, it issues a reset
command. Once the valve has closed, the
close-valve routine powers off the valve
driver to save power. However, before do-
ing so, it changes the state of any other
valve that is controlled by that driver; oth-
erwise, the driver needs to be immediately
turned on again, wasting time and power. 

This example highlights several key chal-
lenges: Devices are controlled indirectly
through other devices; they can negatively in-
teract and, hence, need to be coordinated; they
fail and, hence, need to be monitored; and
when they fail, they must quickly be repaired.
To address these challenges, TITAN’s reactive
planner precompiles a set of procedures that
form a goal-directed universal plan, specifying
responses for achieving all possible target
states, starting in all possible current states.
These procedures constitute a set of compact
concurrent policies, one for each component,
and are generated by exploiting properties of
causality and reversibility of action. In con-
trast, the size of an explicit universal plan is ex-
ponential in the number of components. TI-
TAN’s reactive planner, called BURTON, is
developed in Williams et al. (2003) and
Williams and Nayak (1997). 

Efficient Online Reasoning
through CONFLICT-DIRECTED A*

The core problems underlying model-based
programming, such as mode estimation and
goal interpreter, involve a search over a discrete
space for the best solution that satisfies a set of
finite-domain constraints. These problems,
called optimal constraint-satisfaction problems
(OCSPs), consist of a set of decision variables y,
each ranging over a finite domain, a utility
function f on y, and a set of constraints C that
y must satisfy. A solution is an assignment to y
that maximizes f and satisfies C. For mode esti-
mation, each y denotes a set of possible next
transitions for a component; f maximizes tran-
sition probability; and C denotes consistency
between the target state, model, and observa-
tions. For a goal interpreter, each y denotes sets
of reachable transitions for a component, f
minimizes target state cost, and C denotes the
entailment of the configuration goal by the tar-
get state. A key to the success of model-based
programming is the ability to perform this
search quickly and correctly. The best methods
for finding optimal solutions, such as A*, ex-
plore the space of solutions one state at a time,
visiting every state whose estimated utility is
greater than the true optimum (figure 9a). The
time taken to visit this number of states is un-
acceptable for model-based executives, which
perform best-first search within the reactive
control loop. 

The CONFLICT-DIRECTED A* method, used by TI-
TAN, also searches in best-first order but acceler-
ates search by eliminating subspaces around
each state that are inconsistent. This process
builds on the concepts of conflict and kernel
diagnosis introduced in model-based diagnosis
(de Kleer and Williams 1987; de Kleer, Mack-
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consistent and, hence, an optimal solution.
Figure 7 shows a similar conflict-detection se-
quence, generated by a goal interpreter for the
Cassini example.

CONFLICT-DIRECTED A* consists of four steps:
First, a candidate S is generated, which is the
best-valued decision state that resolves all dis-
covered conflicts. Second, S is tested for con-
sistency against the constraints. Third, when S
tests inconsistent, the inconsistency is gener-
alized to one or more conflicts, denoting states
that are inconsistent in a manner similar to S.
Fourth, CONFLICT-DIRECTED A* jumps down to
the next-best candidate S′ that resolves all con-
flicts discovered thus far. This process repeats
until the desired leading solutions are found,
or all states are eliminated. (Note that the can-
didate is tested using any suitable CSP algo-
rithm that extracts conflicts, allowing CON-
FLICT-DIRECTED A* to be applied to a wide family
of constraint systems).

The CONFLICT-DIRECTED A* algorithm is pre-
sented in Williams and Ragno (2003) and
makes rigorous use of a set of focusing mecha-
nisms first introduced heuristically within the
SHERLOCK diagnosis system (deKleer and
Williams 1989) and evolved within the model-
based–diagnosis community over the last
decade. Although it emerged in the context of
diagnosis, we have found CONFLICT-DIRECTED A*
to be an equally powerful algorithm for recon-
figuration, planning, and knowledge compila-
tion. 

Model-Based Execution Six Light
Minutes from Earth

TITAN and its predecessors, LIVINGSTONE

(Williams and Nayak 1996a), SHERLOCK (de-
Kleer and Williams 1989), and GDE (de Kleer,
Mackworth, and Reiter 1987), have been ap-
plied to a wide range of applications over the
last two decades, including space systems,
copiers, automobiles, electronics, power trans-
mission systems, and biological systems. In
the space domain, we are currently incorporat-
ing RMPL and TITAN within the Massachusetts
Institute of Technology (MIT) SPHERES multi-
spacecraft mission, which is on the manifest to
be flown inside the International Space Sta-
tion. In addition, we are working in collabora-
tion with the California Institute of Technolo-
gy Jet Propulsion Laboratory to apply RMPL and
TITAN to the National Aeronautics and Space
Administration (NASA) Mars 2009 Rover mis-
sion. TITAN has also been applied to test beds
for the United States Air Force TechSat 21 mis-
sion and NASA’s Messenger and Space Tech-
nology 7 missions.

worth, and Reiter 1992). A conflict describes a
set of states that are inconsistent with the con-
straints. A state contained by a conflict mani-
fests the conflict, and a state not contained by
a conflict resolves the conflict. The kernel diag-
noses describe a set of states that resolve all
known conflicts and, hence, the portion of the
search space that hasn’t yet been pruned.

In figure 9b, CONFLICT-DIRECTED A* first selects
state S1, which proves inconsistent. This in-
consistency generalizes to Conflict 1, which
eliminates states S1 to S3. CONFLICT-DIRECTED A*
then tests S4 as the highest utility state resolv-
ing Conflict 1. S4 tests inconsistent and gener-
ates Conflict 2, eliminating states S4 to S7. CON-
FLICT-DIRECTED A* continues until it finds S9
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Figure 9. A* and CONFLICT-DIRECTED A*.
A. A* examines all best-cost states to the solution. B. CONFLICT-DIRECTED A* jumps
over best-cost states contained by known conflicts.
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TITAN’s deductive controller is a generaliza-
tion of the LIVINGSTONE mode estimation and re-
configuration system (Williams and Nayak
1996a). LIVINGSTONE was demonstrated in flight
in the spring of 1999 on NASA’s New Millenni-
um Deep Space One (DS1) probe as part of the
remote-agent autonomy experiment (Bernard
et al. 1999). DS1 is an asteroid and comet flyby
mission that used an ion-propulsion system
and navigated by the stars using a camera and
on-board star map. The remote-agent experi-
ment demonstrated that an autonomous sys-
tem can automatically plan and execute a
space mission, given a set of mission goals and
a spacecraft operation model, and that it can
recover from failures by diagnosing and repair-
ing the spacecraft using engineering models.
During this experiment, LIVINGSTONE was exer-
cised on a wide range of failures: It detected
that a camera was stuck on and invoked mis-
sion replanning to handle the loss of resources,
it detected a switch sensor failure and deter-
mined that it was harmless, it repaired an in-
strument by issuing a reset, and it compensat-
ed for a stuck-closed thruster valve by
switching to a secondary control mode.

The thruster scenario involved isolating a
faulty valve among eight valve-thruster pairs
but only sensing a three-dimensional accelera-
tion. A model using only the sign of quantities
and their relative value was sufficient for LIV-
INGSTONE to perform this task. In addition, be-
cause of the simplicity of these models, their
development time was a minor fraction of the
total development time for the remote-agent
experiment.

Beyond the space domain, TITAN is being
demonstrated in the context of two automo-
tive applications. The first application is the
control and fault management of a multivehi-
cle cooperative cruise control system devel-
oped at University of California at Berkeley.
The second application is an on-board automo-
bile fault-management system, which is being
developed in collaboration with Toyota.

RMPL offers one instance of a larger family of
reactive model-based executive programming
languages, which are parameterized by the
plant modeling language and its correspond-
ing deductive controller. The next two sections
highlight two different variants of RMPL. 

Model-Based Programming of
Hybrid Systems

The year 2000 was kicked off with two mis-
sions to Mars, following on the heels of the
highly successful Mars Pathfinder mission. The
Mars Climate Orbiter burned up in the Martian

atmosphere when a units error in a small forces
table introduced a small but indiscernible fault
that, over a lengthy time period, caused the
loss of the orbiter. The problem of misinter-
preting a system’s dynamics was punctuated
later in the year when the Mars Polar Lander
vanished. It most likely crashed into Mars after
it incorrectly shut down its engine 40 meters
above the surface because it misinterpreted its
altitude as a result of a faulty software monitor. 

This case study is a dramatic instance of a
common problem—increasingly complex sys-
tems are being developed whose failure symp-
toms are nearly indiscernible until a cata-
strophic result occurs. In addition, these
failures are manifested through a coupling be-
tween a system’s continuous dynamics and its
evolution through different behavior modes.

We address these issues through a hybrid
model-based executive called MORIARTY whose
mode-estimation capability is able to track a sys-
tem’s behavior along both its continuous state
evolution and its discrete mode changes (Hof-
baur and Williams 2002). Failures can generate
symptoms that are initially on the same scale as
sensor and actuator noise. To discover these
symptoms, MORIARTY uses statistical methods to
separate the noise from the true dynamics.

MORIARTY extends TITAN’s concurrent proba-
bilistic constraint automata model to include
continuous dynamic system models as con-
straints (top left, figure 10). This framework is
unlike most traditional hybrid modeling sys-
tems (for example, Henzinger [1996]) that de-
fine mode transitions to be deterministic or do
not explicitly specify probabilities for transi-
tions. MORIARTY tracks a system’s hidden state by
creating a hybrid HMM observer (left, figure 10).
The observer uses the results of continuous-state
estimates to judge a system’s mode changes and
coordinates the actions of a set of continuous-
state observers. This approach is similar to work
pursued in multimodel estimation (Li and Bar-
Shalom 1996; Maybeck and Stevens 1991).
However, MORIARTY provides a novel anytime,
any-space algorithm for computing approxi-
mate hybrid estimates, which allows it to track
concurrent automata that have a large number
of possible modes. MORIARTY is being demon-
strated on Mars entry, descent, and landing sce-
narios (right, figure 10) and on the fault man-
agement of a simulated Martian habitat.

Model-Based Programming of
Robotic Networks

Thus far, we have focused on model-based pro-
gramming methods that increase robustness
and autonomy by generating the autonomic
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namics of each robot vehicle in the network.
Most embedded programming languages and
robotic execution languages, such as outlined
in Firby (1995), use myopic execution strate-
gies that do not evaluate their future course of
action in terms of feasibility or optimality. KIRK

is distinguished in that it first “looks” by using
fast temporal planning methods that identify
the optimal consistent strategy within the RMPL

program. The result is a partially ordered tem-
poral plan. KIRK then “leaps” using a robust
plan-execution algorithm, described in
Tsamardinos, Muscettola, and Morris (1998),
which adapts to execution uncertainties
through fast, online scheduling.

To look, KIRK’s control sequencer chooses a
set of execution threads from a nondetermin-
istic RMPL program, producing a configuration
plan, and checks to ensure that this plan is
consistent and can be scheduled. The plan
comprises temporally bounded configuration
goals that specify desired states. KIRK’s deduc-
tive controller uses the plant model to map the
configuration plan to a plan that involves exe-
cutable robot commands. Both the control se-
quencer and the deductive controller utilize
variants of graph-based temporal planning to
accelerate reasoning.

The Mars exploration concept has been val-
idated within the MIT cooperative robotics test
bed using four ATRV rovers and an overhead
stereo camera, emulating a blimp (figure 12)
(Williams et al. 2001). KIRK has also been
demonstrated in simulation on the coordina-

processes internal to embedded systems, such
as spacecraft and automobiles. The future looks
to the creation of cooperative robotic networks
in which robotic systems act together to
achieve elaborate missions within uncertain
environments. This network can be a heteroge-
nous collection of planes, helicopters, boats,
and ground vehicles that perform search and
rescue during natural or manmade disasters or
a set of rovers, blimps, and orbiters that ex-
plore science sites on Mars (figure 11). For ex-
ample, to explore Mars, an orbiter performs
initial surveillance, producing a coarse site
map. An agile scout rover, with a tethered
blimp, refines the map with high-resolution
data for local regions and performs initial eval-
uation of the scientific sites. Finally, a laborato-
ry rover performs detailed evaluation of scien-
tifically promising sites. 

To program these robotic networks quickly
and robustly, we extend model-based program-
ming with constructs for specifying global
strategies for multivehicle coordination. We re-
fer to this extended language as cooperative
RMPL and its corresponding executive as KIRK

(Kim, Williams, and Abramson 2001). KIRK gen-
eralizes TITAN’s capabilities for deducing and
controlling hidden state by including capabili-
ties for reasoning about contingencies, sched-
uling activities, and planning cooperative
paths. To support this reasoning, RMPL’s plant
model is extended to include models of the ex-
ternal environment, such as a terrain map, and
specifications for the command set and dy-
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Figure 10. Hybrid Estimation Architecture and Its Potential Application.
Left: Hybrid mode estimation. Right: Mars entry, descent, and landing sequence (courtesy, NASA JPL).



tion of as many as nine air vehicles performing
a suppression of enemy air defense mission.

Discussion
Sensor-rich, networked embedded systems are
taking the world by storm, from our everyday
automobiles to futuristic robotic networks. In
this article, we argued that a radically different
programming paradigm is needed, one that
frees the programmer from the myriad details
of managing low-level interactions and de-
tailed failure analysis. Our solution—model-
based programming—allows the programmer
to elevate his/her thinking to the level of spec-
ifying intended state evolutions, relinquishing
issues of sensing and control to the language’s
model-based executive. 

Through the TITAN executive, we demonstrat-
ed how model-based programming can be used
to easily generate the autonomic processes in-
ternal to robust embedded systems. The early
sibling of TITAN’s deductive controller, LIVING-
STONE, was demonstrated to diagnose and re-
pair a half dozen failures in flight on the NASA
New Millennium DS1 probe. TITAN is currently
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Figure 11. Mars Exploration Using Rovers.

Figure 12. Mars Exploration Using Blimps.
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