
■ The automotive industry was the first to promote
the development of applications of model-based
systems technology on a broad scale and, as a re-
sult, has produced some of the most advanced pro-
totypes and products. In this article, we illustrate
the features and benefits of model-based systems
and qualitative modeling by prototypes and appli-
cation systems that were developed in the automo-
tive industry to support on-board diagnosis, design
for diagnosability, and failure modes and effects
analysis.

Problems and Requirements in
the Automotive Industry

The automotive industry was the first to
promote the development of applica-
tions of model-based systems technology

on a broad scale and, as a result, has produced
some of the most advanced prototypes and
products. Car manufacturers and their suppli-
ers face increasingly serious challenges particu-
larly related to fault analysis and diagnosis dur-
ing the life cycle of their products. On the one
hand, the complexity and sophistication of ve-
hicles is growing, so it is becoming harder to
predict interactions between vehicle systems,
especially when failures occur. On the other
hand, legal regulations and the demand for
safety impose strong requirements on the de-
tection and identification of faults and the pre-
vention of their effects on the environment or
dangerous situations for passengers and other
people. Also, customer satisfaction is impor-
tant to remain competitive and means that the
manufacturer must eliminate breakdowns and

reduce maintenance time and the number of
misdiagnoses.

Another problem is that garage workshop
staff need more training and assistance to
make correct diagnoses for complex systems
(for example, electronic control units are often
replaced, and when examined by the manufac-
turer, no fault is found with them). 

Finally, cars come in many variants of de-
tails and supplements, dependent on the
make, year, or even almost individual cus-
tomization (this problem is also relevant to
suppliers delivering functionally similar sub-
systems to different manufacturers or for dif-
ferent models). This issue, termed the variant
problem, is a major cost factor, multiplying the
efforts dedicated to different diagnosis-related
work processes.

All these issues must be taken into account
during the many work processes composing
the product life cycle. These work processes in-
clude the following:

Design for diagnosability: Has the system
and, in particular, the placement of sensors
been designed in a way that allows the detec-
tion, localization, and discrimination of faults?

Failure modes and effects analysis (FMEA):
What is the impact of each possible failure of a
system component?

Sneak circuit analysis: Are there states of a
designed circuit that lead to an unintended
(de)activation of certain functions?

Creation of on-board diagnostics: Design
and implement algorithms that generate diag-
nostic hypotheses based on the sensor values
available to the control units on the vehicle.
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model library is feasible and entails collecting
models of (correct and faulty) behavior of such
standard components. Thus, this kind of mod-
el-based reasoning cannot be performed if the
overall behavior of the system cannot be com-
posed from the behavior of the components
and the way in which they are linked.

Model-based systems enable the support of
common engineering analysis tasks, such as
those listed earlier, at early design stages be-
cause they are based on first principles and do
not require experiential or empirical data from
a physical prototype. In contrast, rule-based,
case-based, or machine learning approaches
cannot support early design analysis because
they need experiential knowledge. They pro-
vide well-founded algorithms for automated
problem solving that provide the guarantees
for coverage and completeness of solutions re-
quired for safety-critical applications.

Models and a model library capture a consid-
erable portion of the knowledge and informa-
tion underlying various work processes during
the life cycle, some of which were listed earlier.
Hence, model-based systems provide a means
for explicitly storing corporate technological
knowledge and sharing and communicating it
between different work processes (horizontal in-
tegration). This knowledge becomes accessible
independently of time, location, and people.

The reusable nature of the knowledge and
the guarantees of coverage on the algorithms
promise reductions in design costs, a shortened
product development life cycle, and reductions
in time-to-market for new products.

Engineers generally work with numeric
models, but in this type of work, the capability
to exploit qualitative models (Forbus 1988)
turns out to be crucial for several fundamental
reasons:

First, in particular, in early design phases,
only a partial specification of components and
parameters is available, which prevents the use
of numeric techniques.

Second, many tasks, such as FMEA or the
generation of diagnostic manuals, aim at state-
ments about classes of (fault) behavior and
symptoms rather than specific instances. For
example, the effect of a leakage of any size,
rather than just a leakage of a specified size, has
to be predicted.

Third, faults are defined as qualitative devia-
tions from normal functioning (for example,
flow through a pipe is reduced) rather than ar-
bitrary discrepancies with respect to precise
values (for example, flow is 4.12 gallons/
minute but should be 6.73 gallons/minute).

Fourth, precise values often do not exist be-
cause the vehicle is operated in a noisy and

Workshop diagnosis: Create diagnostics
that guide and exploit tests performed on the
vehicle in a workshop.

These tasks are knowledge intensive. Their
support requires knowledge-based systems. A
major part of the knowledge is knowledge
about the technology. This knowledge is best
captured by models. The next section explains
why model-based reasoning is the best way to
capture and use this knowledge and is followed
by examples of how the models are used dur-
ing the product life cycle.

The Answer Provided by Model-
Based Systems

Model-based systems provide a good basis for
solving the problems analyzed in the first sec-
tion because they are based on a separation of
the problem-solving algorithm from the model
and on the compositionality of this model,
which addresses the variant problem. Once a
library of appropriate component models has
been established, only a structural description
of the respective device (for example, obtained
from design data) is required to automatically
generate a system model and, based on it, a
problem-solving system dedicated to this de-
vice. Figure 1 illustrates this idea for the pro-
duction of a model-based diagnostic system.

Because vehicles are assembled from stan-
dard components, and the behavior (and mis-
behavior in case of a fault) emerges from the
behavior of these components, establishing a
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widely unmeasurable environment, and only
incomplete data are available (for example,
about properties of the road surface).

Fifth, qualitative models provide an appro-
priate level of abstraction for modeling com-
plex systems and processes where standard
mathematical models do not exist or are not
tractable (consider the combustion process or
communication among the control units).

Sixth, they enable an intuitive representa-
tion and presentation of knowledge and infor-
mation to the users.

The qualities outlined here mean that quali-
tative models often provide appropriate answers
for a wide range of systems, with incomplete
knowledge. Thus, automation of reasoning is
enabled about the complex systems found in
modern vehicles, early identification of safety
and reliability issues, and generation of good di-
agnostics. Such automation can be done for
many different vehicle variants with little extra
effort.

In the following sections, we illustrate the
features and benefits of model-based systems
and qualitative modeling by prototypes and
application systems that were developed in the
automotive industries to support on-board di-
agnosis (Automating Production of On-Board
Diagnostics), design for diagnosability (Inte-
grated Design Process for On-Board Systems),
and FMEA (Detecting Design Defects).

Automating Production 
of On-Board Diagnostics

Modern passenger vehicles contain a growing
number of processors, which could be more
than 100 for a high-end limousine. This com-
putational power, originally utilized mainly to
control the normal operation of various sub-
systems, such as the engine, the antilock brak-
ing system, airbags, beams, and air condition-
ing, is utilized more and more to also run
software that deals with faults and abnormal
behavior. It has a threefold purpose:

First is the detection of faults, which is, for
example, required by U.S. regulations for emis-
sion-related problems.1

Second is the triggering of so-called recovery
actions, that is, a different control scheme for
a subsystem that allows for its continued,
though limited, operation under fault condi-
tions, for example, by limiting certain perfor-
mance parameters.

Third is providing information for subse-
quent fault localization in the workshop,
which typically happens by storing a fault code
that represents a symptom (for example, “open
circuit”) rather than a particular component

fault and, hence, is only a starting point for
further testing.

The pressure on car manufacturers to im-
prove on-board diagnostics is high. It is needed
to achieve compliance with legal restrictions,
avoid overly restrictive recovery actions and
customer dissatisfaction, and reduce after-sales
costs by providing a narrower focus for main-
tenance in the workshop. In particular, sup-
porting the production of after-sales costs is
crucial for the worldwide operation of car com-
panies because it is close to impossible to guar-
antee the requested high and up-to-date skills
and information level of maintenance staff all
over the world.

Any attempt to produce optimal on-board
diagnostics faces the general problems dis-
cussed in the introduction, particularly high
and repetitive efforts because of the variant
problem and the necessity to reflect this goal
early in the design process. Model-based sys-
tems promise to provide a new methodology
and new software solutions that are needed to
address the requirements for both reliable and
efficient diagnostics of vehicles and systematic
and economic processes for generating them.
This promise has prompted the strong interest
of the European car industries in this technol-
ogy and why the Vehicle Model-Based Diagno-
sis (VMBD) Project was started in 1997.2

The Task: On-Board Diagnosis 
of Black Smoke Problems
The goal of VMBD was to run model-based di-
agnosis on board real demonstrator vehicles. In
the following, we present a case study (more
details are given in Sachenbacher, Struss, and
Weber [2000]). Another on-board demonstra-
tor is described in Cascio et. al (1999). Because
increased legislative and customer demands
have led to new requirements for aspects relat-
ed to emissions and performance of the sys-
tem, the case study focused on effects that in-
volved incomplete fuel combustion in a diesel
engine because of an excessive quantity of fuel
injected or insufficient airflow to the engine,
resulting in increased carbon emissions (called
black smoke problems). The experimental envi-
ronment was provided by the turbocontrol sys-
tem of a Volvo 850 TDI demonstrator vehicle.

A schematic of this system is contained in
the screenshot of the demonstrator system in
figure 2. The air is taken in and the airflow
measured on the right bottom part of the struc-
ture. The intake turbine compresses the air
(with the pressure measured by a sensor) and
feeds it to the combustion chamber of the en-
gine (top middle). The exhaust gases exiting to
the left drive the exhaust turbine, which is
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oxygen supply to the engine and, hence, the
potential for incomplete combustion. 

The on-board diagnosis prototype was to use
only signals available to the standard ECU
without additional sensors. These signals were
from the boost pressure, airflow, and engine
speed sensor and the actuator signals indicat-
ing the amount of fuel quantity injected and
the position of the turbocontrol valve. 

This application imposes a number of re-
quirements that are typical for on-board diag-
nosis of a broader class of subsystems:

First, the system has a dynamic behavior de-
scribed by continuous variables.

Second, there are relatively few observables.
Third, part of these observables are very

noisy signals (see the signals displayed in the
upper window of the screenshot in figure 2).

Fourth, real-time performance has to cope
with a high frequency of signals (with data

connected to the intake turbine. Its speed can
be influenced by the waste-gate valve, which is
controlled by the pressure-driven converter.
This pressure in the control pipe is, in turn, de-
termined by the turbocontrol valve (top right),
an actuator controlled by the engine electronic
control unit (ECU).

Types of failures that can lead to black
smoke symptoms involve leakages in pipes,
malfunctions of valves (for example, stuck-at-
open or stuck-at-closed), increased friction in
bearings (resulting in a delay of actuators), or
signal disturbances because of electrical fail-
ures. The demonstrator vehicle included facili-
ties to create some of these failures. For exam-
ple, it had a valve installed in the air hose
between the turbine outlet and the engine in-
take manifold that could be opened to simu-
late a leakage. If such a leakage is too large to
be compensated for, it will lead to insufficient
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coming in roughly every 10 milliseconds, this
process is one of the fastest on a vehicle).

The Basis for the Model-Based 
On-Board Diagnosis System
The solution produced in the project was based
on a compositional qualitative model of the
turbocontrol system and its exploitation in a
so-called consistency-based diagnosis system.
In the following, we briefly describe basic prin-
ciples of this solution. 

Qualitative Deviation Models According to
the principles discussed in The Answer Provid-
ed by Model-Based Systems, a library of com-
ponent models was built rather than a closed
model of the entire turbocontrol system. For
most components of the system, such as pipes
and valves, there exist straightforward mathe-
matical models for describing their physical ef-
fects, mainly in terms of airflow and pressure.
Rather than using these models as numeric
ones, they were abstracted to a qualitative
form. The resulting qualitative models capture,
in particular, interdependencies among devia-
tions of values of parameters and variables. For
example, the model of a valve contains a con-
straint 

[∆q] = [A] ⋅ ([∆p1] – [∆p2]) + [∆A] ⋅ ([p1] 
– [p2]) – [∆A] ⋅ ([∆p1] – [∆p2])

on the signs of the deviations of pressure
([∆pi]), flow ([∆q]), and area ([∆A]), where [x]
means sign(x). This constraint allows, for ex-
ample, to infer that an increase in p1 ([∆p1] = +)
will lead to an increase in the flow ([∆q] = +) if
p2 and the area remain unchanged ([∆p2] = 0,
[∆A] = 0), and the valve is not closed ([A] = +).
The deviations can be related to any reference
value, often a nominal value, but also a previ-
ous value, in this case representing a kind of
qualitative derivative. 

Based on the structural description, graphi-
cally represented in the main window of figure
2, a model of the turbocontrol system is gener-
ated automatically from the component mod-
els and imported by the diagnosis runtime sys-
tem (as an XML file).

Consistency-Based Diagnosis 
The diagnosis run-time system was provided
by RAZ’R, a commercial system of OCC’M Soft-
ware,3 which is an implementation of consis-
tency-based diagnosis (de Kleer, Mackworth,
and Reiter 1992; Dressler and Struss 1996). 

This technique considers diagnosis as a
search for device models that are consistent
with the given observation about the actual be-
havior. Based on the given observations and
the device model, conclusions are computed
about system parameters and variables (ob-

served and unobserved). For each derived pre-
diction, the set of component models involved
in it is recorded. This information can be deter-
mined by the diagnosis system because the de-
vice model has a structure that reflects the de-
vice constituents. If a contradiction is detected
—that is, conflicting conclusions for a variable
occur (fault detection)—the set of components
involved in it indicates which components
possibly deviate from their intended behavior.
Based on this information, diagnosis hypothe-
ses are generated, that is, sets of faulty compo-
nents that account for all detected contradic-
tions (fault localization). 

As an illustration, consider the scenario with
the leakage at the engine intake manifold
(Junction3 in the schematic in figure 2). The
plots of the signal in figure 2 show that because
of this leakage (the open valve), the sensed val-
ue of the boost pressure starts to drop at t0. The
ECU responds by changing the position of the
turbocontrol valve (to a certain limit), which
should counteract the pressure drop but fails to
achieve this counteraction. To us, the qualita-
tive characterization of the signals, in conjunc-
tion with the qualitative understanding of the
intended functioning of the components, en-
tails the conclusion that at least one of the par-
ticipating components must be faulty. The
same result is obtained by the model-based di-
agnosis system on the basis of the qualitative
deviation model and an appropriate abstrac-
tion of the signals. 

The demonstrator system uses a signal ab-
straction component that transforms each in-
coming vector of signals to the qualitative level
the model is stated at. Only if this abstracted
signal vector represents a new qualitative state
is it entered into the diagnosis system. The re-
sulting reduction of input and, hence, of diag-
nostic inferences, is immense, as illustrated by
the following example: Instead of more than
1000 numeric vectors, only 12 qualitative ones
(indicated by the peaks at the bottom of the
signal window in figure 2) have to be proces-
sed.

One of these qualitative vectors states that
the boost pressure drops, but all other signals
(including the turbocontrol valve position) do
not change. This result is in contradiction to
the deviation model, which predicts a constant
pressure from the steadiness of the valve posi-
tion and the engine speed. The set of compo-
nents whose models are involved in this predic-
tion makes up the control path (turbocontrol
valve, converter, and waste-gate valve) and the
feedback loop from the intake turbine using the
engine and exhaust turbine. One component
in this fairly large set must be broken. The local-
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Figure 3 shows the installation on the demon-
strator vehicle. 

The screenshot in figure 2 shows the diagnos-
tic results for a slowly opening leakage during
an engine stall. The measurement runs for 9.75
seconds and yields 1064 quantitative observa-
tion vectors. The signal transformation module
reduces them to only 12 qualitative observation
vectors. The two single fault hypotheses gener-
ated by the system (displayed in the bottom left
section) contain the component where the fail-
ure was actually induced (Junction3). The run
time for the example was 2.87 seconds (on a
Pentium PC running WINDOWS). Similar results
were obtained for the other failures that could
be induced on the car (but because of the avail-
able sensors, not always with a comparable
quality of the fault localization). Thus, for the
considered subsystem and scenarios, the perfor-

ization of the fault can be confined, combining
evidence from several detected discrepancies;
for example, an increasing airflow signal con-
tradicts the decreasing boost pressure, yielding
a different conflict set of components.

It is worth noting that the earlier inferences
use only models of correct component behavior
and no description of possible faults. If, in addi-
tion, models of faulty behavior are provided, the
same technique (checking consistency of a mod-
el with the observations) can be used to discard
particular faults (fault identification) or con-
clude correctness of certain components if the
set of modeled faults is considered complete.

The Demonstrator System and Its Results
The demonstrator system was realized on a
notebook that received the actual data from
the ECU using a serial line while the vehicle
was stalled, simulating full-load conditions.
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Figure 3. The VMBD Demonstrator System. 
Top left: The two test vehicles used in the project (a Lacia and a Volvo). Top right: The Volvo test vehicle with the control unit (on the floor)
and the cables that connect to the laptop. Bottom left: The laptop running the model-based diagnosis software. Bottom right: Switches in the
glove compartment for turning on various fault conditions.



mance of the on-board system is in the order of
magnitude of real time.

There are several cornerstones of the success
of this experiment:

First, the fundamental cornerstone is the
model-based technology, more specifically, a
compositional modeling methodology that is
based on a library of component-behavior
models. The component-oriented granularity
ensures reusability of the model fragments and
provides the model structure required for com-
ponent-oriented diagnosis. Associating fault
models with the respective components pro-
vides a principled way of capturing knowledge
about faults in a modular and reusable way.
This knowledge capture method contrasts with
other AI approaches based on storing associa-
tions between symptoms and faults for each
device in terms of rules or cases, such as neural
nets and case-based reasoning, as well as other
engineering approaches (trying to identify pa-
rameter deviations in a closed mathematical
model of the entire device).

Second, consistency-based diagnosis was ap-
plied as state-based diagnosis; thus, the consis-
tency check (models versus observations) is
conducted only for each snapshot given by a
vector of qualitative values, not that the actual
behavior is tracked over time and compared to
the simulated model. It can be performed as a
set of constraint-satisfaction tasks and is im-
portant to achieving the required real-time be-
havior, what cannot be expected under a sim-
ulation-based technique, in particular, when a
number of fault models have to be simulated.
Nevertheless, the results remain the same un-
der certain conditions (see Struss [1997]).

Third, the use of qualitative models is crucial
for several reasons. They provide a finite, com-
pact representation of the behavior of the sys-
tem, which is important given the limitations
of the on-board processors (the possibility of
further reduction is discussed in Integrated De-
sign Process for On-Board Systems). The noise
in the signals vanishes behind the qualitative
abstraction. The most important effect is the
reduction of the number of input vectors and,
hence, calls to the diagnosis algorithm, which
enables the real-time performance. 

The results of VMBD achieved the goal of
providing evidence for the feasibility of using
model-based systems and qualitative models
for on-board diagnosis and strengthened the
interest of the companies in introducing this
technology. However, they were achieved by a
specialized team of engineers and AI research-
ers who were familiar with this technology in
a process that was unrelated to the current
practice of developing on-board systems. Tech-

nology transfer is not simply the application of
a principled solution to a real problem; it also
has to deliver a work process for producing the
application and, moreover, a work process that
takes into account the people currently in-
volved in performing the task, their education,
skills, existing tools, and current practice. This
challenge was the starting point of a follow-up
project, integrated design process for on-board
diagnosis (IDD).4

Integrated Design Process for
On-Board Systems

Introducing model-based systems for on-board
diagnosis into industrial practice in the auto-
motive domain does not mean introducing a
new task and activity. Thousands of engineers
are already carrying out this task. Therefore, it
is useless to simply invent a brand new process
that is unrelated to the current one. In addi-
tion, it is impossible to determine and specify
the software tools required without consider-
ing the ways tasks are viewed and solved and
the tools used today. In particular, there are, of
course, models developed and used in the cur-
rent process, and a frequently asked question
has always been, How do your diagnostic mod-
els relate to the currently used models?

Analysis of the Current Process of 
Design and Generation of Diagnostics 
The IDD project started with an analysis of the
current design processes of each of the indus-
trial partners, with a focus on the integration
of diagnosis-related processes into the whole
design process of mechatronic subsystems.
Based on this analysis, a merged process has
been developed that is based on the similarities
recognized, ignoring details and small differ-
ences. The abstraction of this process is used as
a comprehensive reference for the current de-
sign processes. This analysis and its conse-
quences are presented in more detail in Brigno-
lo et al. (2001). Here, we focus on the inner
design loop, which is concerned with the de-
sign of the ECU-based control system and com-
ponents. Each iteration of this loop involves
the design and verification of the control algo-
rithms, FMEA, the development of on-board
diagnostics, and the implementation of the
ECU (hardware and software), as shown in fig-
ure 4. The verification step at the end of the
first iteration is performed using models (soft-
ware-hardware in the loop), whereas later in
the design process, the physical system is used.
Depending on the achieved results, there are
several iterations, each one of them producing
an advanced prototype.

Articles

WINTER 2003    23



least) two major requirements, which are ad-
dressed by model-based systems:

First, a fast and efficient flow of information
about changes in the design between the dif-
ferent processes and a model of the system be-
ing designed must play a central role in a new
process. There is a good basis for this solution
in the current process because the verification
of control algorithms in early phases is based
on system models and simulation.

Second, the effort needed to perform FMEA
and diagnostics generation has to be reduced,
and they can  effectively be supported or auto-
mated by computer tools based on the model;
that is, they have to be model-based tools. 

The new process and the respective tools
should be integrated or combined with the
simulation tools that are currently used for the
design of control strategies and typically based
on quantitative models. In IDD, this process
was MATLAB/SIMULINK. Ideally, models created in
these environments should automatically be
transformed into qualitative diagnostic mod-
els that can be imported to the model-based
tools. 

Figure 5 shows the overall architecture of the
new design support system, part of which was
implemented as the prototypical IDD toolbox
(see Dressler and Struss [2003]). The informa-
tion flows consist of XML documents passed be-
tween the modules.

The project dedicated significant efforts to
research on the automated abstraction of nu-
meric models and the implementation of sev-

The result of the analysis showed that in cur-
rent practice, the design process and the selec-
tion of components (particularly sensors and
their location) is mainly guided and dominat-
ed by control design. FMEA and diagnostics de-
velopment are carried out as subordinate or
even subsequent tasks, often postponed until
the final iterations to avoid the costly repeti-
tion of these tasks after every change in the
control-oriented design steps. As a conse-
quence, the considerations of failure effects
and diagnosis have little impact on the design,
and the developers of diagnostics simply have
to accept a system structure and sensors deter-
mined by control purposes. If their demand for
changes cannot be denied, it leads to further
design iteration and, hence, additional cost
and delays. The bottom line is that, at present,
the important role of diagnosis in on-board
systems is not reflected by the role that diag-
nostics development plays in the automotive
design process.

Model-Based Tools for a New Process
It would be much better to conduct the steps of
failure analysis and diagnostics development
early in the design process, tightly integrated
with the control design process. In this way, re-
quirements from the various work processes
can become explicit and influence the design
early on, providing the potential for avoiding
some design iterations and generating better
results for diagnosability. Software tools that
help to achieve this goal have to address (at
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eral prototypes that generate qualitative mod-
els from MATLAB/SIMULINK models. The founda-
tions of one of the implementations and a crit-
ical discussion of the practical experiences are
presented in Struss (2002). 

The model compression component elimi-
nates irrelevant variables from the model. In
the context of on-board diagnosis, this com-
pression allows one to exploit the fact that the
set of (potentially) observable variables is fixed
and that all that matters is the association be-
tween values of these variables and the consis-
tent diagnoses. All other variables (in particu-
lar, intermediate variables that are only the
result of the compositional origin of the mod-
el) can be dropped, affecting not only the size
of the on-board model but also the complexity,
completeness, and performance of the algo-
rithms that operate on the model. 

On-board diagnostics generation delivers re-
sults in various forms: (1) a compressed model
(in XML) as an input to the RAZ’R diagnosis run-
time system that was introduced earlier; (2) C-
CODEM, which is suited for 16-bit microcon-
trollers, including the Infineon C166/7 series;
and (3) decision trees (XML and HTML) as speci-

fication input for diagnostics developers.
In the following discussion, we briefly pre-

sent the intuitive foundation of the novel diag-
nosability analysis tool (for more details, see
Dressler and Struss [2003]; Struss et al. [2002]).

Diagnosability Analysis
Diagnosability analysis is expected to answer
two different types of questions:

First, for a particular design and a chosen set
of sensors, determine fault detectability, that is,
whether and under which circumstances the
possible faults considered can be detected (by
the ECU), and fault (class) discriminability, that
is, whether and under which circumstances,
the ECU is able to distinguish different classes
of faults.

The second question is a generalization of
the fault identification task (“determine the
present fault mode unambiguously”). This gen-
eralization is motivated by on-board diagnostic
requirements: Full fault identification is usual-
ly not possible and also not required for on-
board purposes because there is a limited set of
possible recovery actions that can be per-
formed by the control unit. They are to be se-
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are represented as finite relations, and discrim-
inability analysis becomes the task of comput-
ing the observable distinctions between two re-
lations. For each analysis, there is a fixed set of
observable variables. In an on-board situation,
this set is that of actuator and sensor signals.
Whether or not two faults lead to different ob-
servations can depend on the situation they
occur in. The situation can be characterized by
quantities such as the engine temperature, the
speed, and the position of the brake pedal. To
describe the situations under which detection
or discrimination is possible, we introduce a set
of characterizing variables.

The abstract example in figure 6 provides an
intuition about possible answers to the dis-
criminability question. The vertical axis repre-
sents the characterizing variables and the hor-
izontal axis the observables. There can be
many unobservable variables, but the shown
projection is all that matters.

Two different fault modes (or, more general-

lected dependent on the general type of fault
and its severity rather than the individual
fault. For example, only certain critical faults
can require immediate shutoff of the engine,
but others allow continued operation, possibly
under certain limitations. 

Also, off-board diagnosis is appropriately
characterized as fault-class discrimination,
where the classes comprise the faults of the var-
ious smallest replaceable units. More generally,
diagnosis is usually a discrimination task
whose goal is defined by the available “thera-
py” actions. Discriminability is the fundamen-
tal task because detectability can be formulated
as discriminability from the normal behavior.

Although the ultimate goal is to discrimi-
nate classes of behavior modes from each oth-
er, the analysis has to be based on the discrim-
inability of each pair of individual faults taken
from any pair of classes, which is unfortunate
from a computational point of view.

In our framework, (fault) behavior modes
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Figure 6. Three Categories of Discriminability of Two Behavior Modes.
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ly, behavior modes) are represented by two re-
lations. As illustrated in figure 6, we can distin-
guish three different cases:

First, in the upper section, the relations cov-
er each other; that is, for any situation in the
projection of this intersection area, the observ-
able set of consistent tuples for the two behav-
ior modes is the same; hence, they cannot be
discriminated from each other.

Second, in the lower section, they are totally
disjoint; that is, any of the respective situations
always lead to different system behavior and,
thus, necessarily discriminate between the two
modes.

Third, for all other situations, the two modes
can possibly be discriminated because the actu-
al response of the system might be outside one
of the relations but is not guaranteed to be so.

It is obvious that precise definition can be
given to these concepts (see Dressler and Struss
[2003]). If the behavior relations are finite, as is
the case for qualitative models, then the com-
putation of the sets of situations and, hence,
discriminability and detectability can be com-
puted. To support sensor placement for diag-
nosability, the designer can vary the set and lo-
cation of sensors and compare the results.

Insights Gained 
The ambitious project provided a number of
important results and insights, some of the
most important being outlined in the follow-
ing:

The model-centered solution provides a sol-
id basis for the horizontal integration of differ-
ent work processes that are disparate today, in
our case, control design and and diagnostics
generation.

In particular, the link to numeric models
currently developed and used in the engineer-
ing domain is crucial. However, there are some
major roadblocks. First, the prevailing model-
ing practice of engineers and the resulting
models are not a suitable starting point for
model-based systems: They are determined by
their purpose in simulation (and even by the
special simulation algorithm), are targeted at
control under normal conditions, lack models
of faulty behavior, and tend not to be compo-
nent oriented. Second, the automated genera-
tion of qualitative models from numeric mod-
els requires more work on theoretical
foundations and efficient algorithms, in partic-
ular, concerning answers to the fundamental
question of how to compute the important
qualitative distinctions (Struss 2002).

The use of qualitative models was essential
not only for on-board diagnosis generation but
even more for diagnosability analysis because

they allow grounding the solution in opera-
tions on finite relations. 

Contrary to the original plan, no FMEA tool
was developed in IDD. However, another prod-
uct provides evidence for the feasibility of
FMEA. Unlike IDD, the AUTOSTEVE system does
not deal with arbitrary mechatronic systems
but analyzes electrical subsystems.

Detecting Design Defects
The complexity of modern vehicles means that
it is difficult for engineers to examine the inter-
action caused by every possible combination of
input to the system or to consider the effects of
every possible failure combination on the be-
havior of the overall system. Model-based sim-
ulation provides a basis for automatically de-
tecting potential design problems in these
kinds of cases. This section provides examples
of tools to address these issues.

Failure Modes and Effects Analysis
FMEA is an application area where the benefits
of model-based reasoning are evident. FMEA
involves identifying the failure behavior of a
system in the presence of any possible compo-
nent failure. When performed by engineers, it
essentially involves them in mentally simulat-
ing the behavior of the system for hundreds or
even thousands of possible different compo-
nent failures. 

Because it involves so much effort, it is often
not carried out until late in the design process,
when the design has undergone any changes
that are likely to occur, thus avoiding the
prospect of repeating the generation of the
FMEA. However, some of the major benefits of
performing FMEA are lost. Where problems are
detected by performing FMEA, then changes
need to be made to the design, and like any
changes to a design, the earlier in the process
that they are made, the cheaper it is to make
them. 

Model-based reasoning provides an excel-
lent basis for automated generation of FMEA
reports. Qualitative models for components
can be provided as soon as the general behav-
ior of components is known, with compara-
tively little effort, and can be used to simulate
the behavior of the system—both the correct
behavior and the behavior when component
failures are present. This approach has been
particularly successful for generating FMEA re-
ports for electrical systems because of the com-
position and the widespread reuse of electrical
components. The following paragraphs de-
scribe the AUTOSTEVE system (Price 2000), a
commercially available FMEA generator for
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cally, this description will focus on the effec-
tors of the system (motors, lamps, controllers)
and show whether the system is achieving its
intended functions.

Given the simulation capabilities described
earlier, the production of an FMEA report is
straightforward. First, the expected behavior of
the circuit can be obtained by exercising the
circuit simulator for the desired input states
with a correct version of the circuit. Next, for
each failure mode of each component in the
circuit, the AUTOSTEVE system simulates the be-
havior of the faulty version of the circuit for
the same set of input states. The state of the cir-
cuit is abstracted to the functional level after
each change, and differences from the expect-
ed functions in each state are noted. The differ-
ence between the expected functions and the
actual functions in each state indicate the ef-
fects for that failure mode. For example, in a
car security system, if the driver’s door lock was
switched, and doors started to lock, but one
lock motor did not work, so all the doors were
unlocked again, the failure would be that the
locked function failed to occur when expected. 

Automating the process of generating an
FMEA report has a number of benefits, both for
the engineers performing the FMEA and for
their company.

electrical systems based on qualitative model-
ing. This system is used by a number of major
automotive and aeronautic manufacturers for
performing electrical FMEA.

There are three levels to the simulation that is
performed by AUTOSTEVE, illustrated in figure 7.

At the bottom level, qualitative simulation is
carried out on a network of resistors (Lee 1999),
producing results that show where in a circuit
current is flowing and in which direction.

The middle level is where the engineers
specify models that map onto electrical and
electronic components (Snooke 1999). A com-
ponent description consists of a representation
of the states that the component can be in,
along with the resistive properties of the com-
ponent in each state and the failure behavior
of the component. This information is used to
generate an appropriate network of resistors for
the current state of the circuit, for use at the
bottom level, and the results from the bottom-
level simulation are used to calculate changes
to the state of the circuit. This process contin-
ues until the circuit reaches a quiescent state or
repeats previous states.

At the top level, the detailed behavior of the
circuit is abstracted to obtain a description of
the overall behavior of the system in terms ap-
propriate to the engineers (Price 1998). Typi-
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Figure 7. Simulation Levels in AUTOSTEVE.
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First, the engineers receive much better feed-
back on the correct behavior of the system
they have designed. 

Second, FMEA is a tedious task, and au-
tomating the generation of failure effects al-
lows the engineers to focus their time on more
important tasks.

Third, the FMEA results are consistent (not
always the case with hand-generated results).

Fourth, possible problems are identified
much earlier in the design process, perhaps 12
months earlier than would have otherwise
been the case. 

Fifth, virtual prototypes of this kind enable
the company to cut down on the number of
expensive physical prototypes that need to be
built.

Component-based model-based reasoning
means that these benefits are obtained with
minimum effort from the engineers. The vari-
ant problem discussed earlier, where there are
different versions of a design for different
countries and different price ranges, can be
solved with very little extra effort for each vari-
ant. Typically, FMEA results can be made avail-
able for a different variant with the press of a
button because all component models will ex-
ist for the new variant. 

The original research in automating FMEA
was driven by engineers who were tired of per-
forming FMEA without automated tools. Now
that the model-based FMEA software is com-
mercially available, adoption of the technolo-
gy within a company is often driven by engi-

neers who need such tools to do their job prop-
erly as much as by the clear business case.

Sneak Circuit Analysis
A classic example problem (Savakoor, Bowles,
and Bonnell 1993) concerns the cargo bay
doors of a particular aircraft design, where op-
erating the emergency switch for the cargo
doors can cause the landing gear to lower un-
intentionally. This problem is illustrated in fig-
ure 8. Typically, such problems are caused
when a wire, which was expected to provide
current in one direction, is used in the opposite
direction, causing a sneak path. 

Sneak circuit analysis is the process of iden-
tifying and eliminating such sneak paths
where they might occur. Where a wire is allow-
ing current to flow in an unexpected direction,
it can often be prevented with the addition of
a diode to the design, but cost, weight, and re-
liability considerations mean that extra diodes
should not be added to a design unless they are
really needed.

To achieve sneak circuit analysis in AU-
TOSTEVE, it is necessary to declare the legal com-
binations of input under which each separate
function will be active. AUTOSTEVE then per-
forms an attainable envisionment (Forbus
1990) for the circuit,5 exploring all combina-
tions of input to the circuit (switches, sensors)
and all internal states of components. Sneak
circuits are detected as a function operating un-
der an illegal set of input or not operating un-
der a legal set of input (Price and Hughes 2002).
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Figure 8. Illustration of Cargo Door Sneak Path.



Foundations of Consistency-Based
Problem Solving in a Nutshell

One of the achievements of AI in the area of model-based systems
is the development of a rigorous theoretical basis stated in logical
or mathematical terms that allows the defining of various tasks
and their intended results and the proving of properties of solu-
tion algorithms for these tasks.

A behavior model is, interchangeably, regarded as a logical the-
ory or a relation R over a set of variables that characterize a com-
ponent or system

R ⊂ DOM(v) 

where v is a vector of system variables with the domain DOM(v).
Under a component-oriented perspective, the elementary model
fragments Rij are related to behavior modes modei(Cj) of compo-
nents Cj. An aggregate system (under correct or faulty conditions)
is specified by a mode assignment 

MA= {modei(Cj)}

which specifies a unique behavior mode for each component
mentioned. Its model is obtained as the join of the model rela-
tions Rij where the description of the structure, that is, the inter-
action paths between the components, defines which variables
are shared across the component models.

On this basis, various problems in design, monitoring, diagno-
sis, and maintenance can be described and solved by checking the
consistency of the system models with some criterion external to
the model. For example, monitoring and fault detection means
checking whether the system model that corresponds to a system
with all components working normally, MODELOK, is consistent
with the behavior specification, GOALS, given a set of observa-
tions (for example, sensor readings):

MODELOK ∪ OBS ∪ GOALS �? ⊥,

or, if ROK denotes the respective model relation:

ROK ∩ OBS ∩ GOALS =? ∅

If it is assumed that the system at hand is well designed, which
means it satisfies the specification if all components operate nor-
mally,

MODELOK � GOALS  

the check can be reduced to

ROK ∩ OBS =? ∅

Fault localization and fault identification are solved by search-
ing for mode assignments MA whose models are consistent with
the observations

MODEL(MA) ∪ OBS �/ ⊥

or, stronger, entails the observed system response, OBSout, given
the observed state and external stimulus, OBSin,

MODEL(MA) ∪ OBSin � OBSout,

which is called abductive diagnosis.
Consistency-based diagnoses can be generated by some sort of

best-first search according to criteria such as maximal probability,
minimal cardinality of the set of faulty components, and other or-
ders on faults models. 

Diagnosis is followed by therapy, that is, manipulating the sys-
tem to reestablish its compliance with the behavior specification

or some modified or intermediate behavior goals. Unless this ther-
apy is confined to replacement of broken components, it can in-
volve reconfiguration under exploitation of system redundancy
(for example in networks, aircrafts, or spacecraft). Given a mode
assignment as a result of diagnosis, reconfiguration can be
achieved by searching for states of components (for example,
valves and switches) that establish consistency with the (poten-
tially modified) GOALS:

MODEL(MA) ∪ STATES ∪ GOALS �/ ⊥

More complex therapies involve structural changes. 
The analysis of faults is also relevant during the design of sys-

tems. To support FMEA, one has to determine that the effects of a
certain component fault (represented as a mode assignment MA)
violate an intended function of the system. If the function is con-
sidered as part of GOALS, then the task might mean to check
whether the fault is inconsistent with the function

MODEL(MA) ∪ GOALS �? ⊥

or might allow situations that need to be avoided

MODEL(MA) ∩ NEG-GOALS ≠ ∅

Furthermore, the designer should perform a fault-detectability
analysis, that is, an analysis of whether a fault can be distin-
guished from the normal behavior by observing a certain set of
system variables (for example, given by the used sensors). If the
projection to these variables is denoted pobs, then a fault is defi-
nitely detectable if 

pobs(Rfault) ∩ pobs(ROK) = ∅ 

Discriminability analysis looks for observable distinctions of
the fault relations:

(pobs(Rfault1) \ pobs(Rfault2)) ∪ (pobs(Rfault2) \ pobs(Rfault1)) ≠? ∅ 

Test generation aims at finding stimuli to a system that are
guaranteed to produce different output for two mode assign-
ments, MA1 and MA2 (testing for correctness if one is the normal
behavior; testing for discrimination if both are fault modes). If
pcause is the projection to the variables that can be influenced, then
this set of stimuli can be computed as the complement of the set
of stimuli that (potentially) generate the same observable behav-
ior:

pcause (DOM(v)) \ pcause(pobs(RMA1) ∩ pobs(RMA2)) 

Diagnosis and therapy generation (and also design) perform
search in a space of mode and state assignments, respectively. In
practice, it is prohibitive to perform this search and consistency
check exhaustively on a set of enumerated assignments. There are
two fundamental implications: 

First, the generation of candidate assignments has to happen in
a focused manner, which can be achieved by an incremental revi-
sion of partial assignments found to be inconsistent. 

Second, the respective system models to be checked for consis-
tency have to be generated by the problem solver rather than con-
structed manually beforehand. Hence, automated model compo-
sition becomes a requirement for the modeling system underlying
the consistency-based problem solver.

Articles

30 AI MAGAZINE



This approach is more efficient and more accu-
rate than other attempts at automated sneak
circuit analysis, which operate by detecting cur-
rent flowing the wrong way in components. For
classic documented sneaks, it detects all possi-
ble sneak combinations and does not generate
any spurious problem reports. Figure 9 shows
the output from AUTOSTEVE for the cargo bay
door circuit example. Although this example is
fairly simple, it works for much more complex
circuits with many input.

Summary and Conclusions
This article has presented some selected exam-
ples of applying the AI technology of model-
based systems and qualitative modeling in the
automotive industry. It has illustrated some of

the main requirements in this area, the foun-
dations of model-based solutions, and their
benefits. These examples are far from being
comprehensive. Cautiously stated, the majori-
ty of car manufacturers and suppliers are at
least exploring the potential of model-based
systems, either by purchasing and evaluating
commercially available tools or by building
prototypical solutions and carrying out feasi-
bility studies. A number of manufacturers and
suppliers are already deploying solutions in in-
dustrial work processes and on vehicles.

The VMBD and IDD projects presented here
joined several European manufacturers (Fiat,
DaimlerChrysler, Renault, PSA Peugeot-Cit-
roen, Volvo), suppliers (Bosch, Magneti-Marel-
li), and OCC’M Software as a supplier of AI
technology. BMW and Volkswagen are carry-
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Figure 9. AUTOSTEVE Sneak Report for the Cargo Door Example.



Further Research
Some of the most important lessons learned
from deploying model-based reasoning in the
automotive industry provide challenges for re-
search.

Automated modeling was raised as an inter-
esting research topic for model-based reason-
ing quite early on but has been somewhat ne-
glected. Now, supporting and automating
modeling is becoming a necessity for practical
reasons: The creation of model libraries has to
be efficient because otherwise, model-based
technology will be less attractive. For many
systems, models are already created in the stan-
dard engineering processes (particularly during
design), but they are often numeric special-
purpose or black box models that do not meet
the requirements of modularity and generality.
Nevertheless, current models, modeling prac-
tice, and modeling systems have to be seen as
a starting point for model-based systems, and
AI tools are needed to support appropriate
modeling methodologies and the transforma-
tion of models.

Automated model abstraction from the nu-
meric models available is expecially becoming
an important issue because the required gran-
ularity of qualitative component models de-
pends on the structure and parameters of the
respective subsystem and the problem to be
solved (validation of control requires a differ-
ent model than on-board diagnosis, which can
be different from a model needed for off-board
diagnosis). Again, if a task-specific model with
appropriate granularity has to be created man-
ually rather than being generated from some
base model, a model-based solution might be-
come too costly (see Struss [2002]).

The main feature that model-based systems
offer is the automation of reasoning steps.
However, in many cases, mere automated rea-
soning does not pay off as such; supporting
human activities is where the benefit comes in.
For example, the automated generation of di-
agnosis hypotheses and useful tests might have
no practical use if the result is not turned into
plan that minimizes time and cost of human
actions, such as disassembling a device and in-
stalling equipment. Thus, here is a challenge to
model-based planning methods and tech-
niques along the lines of Williams et al. (see ar-
ticle, also in this issue). 

From a more general perspective, some suc-
cesses and problems discussed in this article
highlight a shortcoming that is typical of
many AI fields: Often, researchers confine their
interest to solutions of abstract “tasks.” For ex-
ample, diagnosis is still mainly understood as
the task of inferring faults from a set of obser-

ing out efforts to move diagnostic technology
on board. The Mercedes S has a diagnosis con-
trol unit whose database is generated with the
support of models. Truck companies also face
diagnostic challenges, in particular, under the
requirements of emission-related on-board di-
agnosis (OBD 1993). DAF Trucks runs a project
(together with Siemens and Click Software)
that supports after-sales diagnosis by models
generated by FMEA. Scania is aiming toward
model-based diagnosis using a Power PC on
the trucks. There is a demand for commercial
AI software. R.O.S.E., OCC’M Software, and
FirstEarth Limited provide tools for modeling
and building model-based systems. 

Ford Motor Company’s use of AUTOSTEVE

provides some indication of the value of this
technology. The group of engineers at Ford
who pioneered the use of AUTOSTEVE were re-
cently awarded a Ford European Technical
Achievement Award for their contribution to
advancing electrical design analysis within
Ford. One of the award winners stated, “The
benefits of AUTOSTEVE are important. We can
test and debug electrical systems before we ever
wire them up for tryouts, so that confidence is
close to 100 percent that the first prototype
will be right the first time. The automated
FMEAs have already confirmed adequate ro-
bustness of the design. This saves time in the
development cycle with lower engineering re-
sources and development costs. In fact, the
pressure of program work is becoming so great
that electrical CAE simulations will soon be the
only way we can handle development and sig-
noff of some subsystems.”6

This list of parties interested in the automo-
tive use of model-based reasoning, although
incomplete, signals a significant AI success sto-
ry. A research area that has begun addressing
fundamental AI issues and developed a rigor-
ous mathematical and logical theory has
reached a stage where transfer of its results be-
comes a hot topic because it addresses urgent
industrial needs. Application of the theoretical
results was possible because a number of re-
searchers in the field explicitly exposed them-
selves to the rough world of industrial prob-
lems. One of the insights gained in this
enterprise was that this step did not bring re-
search to an end or turn it into boring applica-
tion programming exercises but provided stim-
uli and orientation to the research, brought
new emphasis to fundamental research goals,
and raised new goals by revealing serious limi-
tations of existing solutions.
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vations and some background knowledge (for
example, a behavior model), that is, as a pure
reasoning task, as stated earlier. Although a
theoretical statement of the diagnostic task is
appropriate for clearly specifying the desired
solutions and developing inference mecha-
nisms, there is no guarantee that it leads to any
usable and useful solutions. To achieve useful
solutions, it is necessary to consider the rele-
vant work processes. It requires analyzing and
modeling how people solve the problem in a
real context, which education and skills they
have, which kinds of tools and information
they use, what the practical constraints are,
how they cooperate and organize their work,
and so on. We argue that modeling and sup-
porting work processes should not only be
done after solving the tasks and when address-
ing technology transfer issues but that it
should be done before as well to define the
proper tasks in the first place. 

Ultimately, consideration of work processes
also touches on a more social or cultural issue:
The tools and solutions we offer are intruding
on a vast field of existing theories, established
techniques, educated people, and organized ac-
tivities, many of them outside computer sci-
ence. Bridging the gap to the world of engi-
neering (and of engineers!) becomes an
important task in the transfer of the model-
based technology. Progress in this respect influ-
ences the transfer process as much as the tech-
nical results.

Notes
1. California’s OBD-II Regulation, Section 1968.1, Ti-
tle 13. 1993. California Code of Regulation, Resolu-
tion 93-40. See www.obdiiesu.com.

2. Vehicle model-based diagnosis (VMBD) involved
Fiat CRF, DaimlerChrysler, Volvo Car Corporation,
Robert Bosch GmbH, Magneti-Marelli SpA, GenRad,
OCC’M Software GmbH, and several universities and
was funded by the Commission of the European
Union in the BriteEuRam III program (Project  BE
95/2128). See Bidian et al. (1999).

3. Raz’r Version 1.6, Occ’m Software GmbH. See
www.occm.de.

4. Integrated design process for on-board diagnosis
(IDD) joined Fiat CRF, Magneti-Marelli SpA, PSA Peu-
geot Citroen, Renault, DaimlerChrysler AG, OCC’M
Software GmbH, and several universities and was
funded by the Commission of the European Union
(Project G3RD-CT199-00058).

5. Envisionment refers to all the states a simulation
can reach. See Forbus (1990).

6. See www.firstearth.co.uk/company/pr/Ford-ETA-
Award.php.
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