
■ The most widely accepted defining feature of the
semantic web is machine-usable content. By this
definition, the semantic web is already manifest in
shopping agents that automatically access and use
web content to find the lowest air fares or book
prices. However, where are the semantics? Most
people regard the semantic web as a vision, not a
reality—so shopping agents should not “count.”
To use web content, machines need to know what
to do when they encounter it, which, in turn, re-
quires the machine to know what the content
means (that is, its semantics). The challenge of de-
veloping the semantic web is how to put this
knowledge into the machine. The manner in
which it is done is at the heart of the confusion
about the semantic web. The goal of this article is
to clear up some of this confusion. 

I explain that shopping agents work in the com-
plete absence of any explicit account of the seman-
tics of web content because the meaning of the
web content that the agents are expected to en-
counter can be determined by the human pro-
grammers who hardwire it into the web applica-
tion software. I therefore regard shopping agents
as a degenerate case of the semantic web. I note
various shortcomings of this approach. I conclude
by presenting some ideas about how the semantic
web will likely evolve.

The current evolution of the web can be
characterized from various perspectives
(Jasper and Uschold 2003):

Locating resources: The way people find
things on the web is evolving from simple free
text and keyword search to more sophisticated
semantic techniques both for search and navi-
gation.

Users: Web resources are evolving from be-

ing primarily intended for human consump-
tion to being intended for use both by humans
and machines.

Web tasks and services: The web is evolv-
ing from being primarily a place to find things
to being a place to do things as well (Smith
2001).1

All these new capabilities for the web de-
pend in a fundamental way on the idea of se-
mantics, giving rise to another perspective
from which the web evolution can be viewed:

Semantics: The web is evolving from con-
taining information resources that have little
or no explicit semantics to having a rich se-
mantic infrastructure.

Despite the widespread use of the term se-
mantic web, it does not yet exist except in iso-
lated environments, primarily in research labs.
In the World Wide Web Consortium (W3C) Se-
mantic Web Activity Statement, we are told
that 

the Semantic Web is a vision: the idea of
having data on the Web defined and
linked in a way that it can be used by ma-
chines not just for display purposes, but
for automation, integration and reuse of
data across various applications (emphasis
mine).2

As envisioned by Tim Berners-Lee: 

the Semantic Web is an extension of the
current Web in which information is giv-
en well-defined meaning, better enabling
computers and people to work in cooper-
ation (Berners-Lee, Hendler, and Lassila
2001, p. 35) (emphasis mine).

[S]omething has semantics when it can
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The lack of an adequate definition of the se-
mantic web, however, is no reason to stop pur-
suing its development any more than an inad-
equate definition of AI was a reason to cease AI
research. Quite the opposite, new ideas always
need an incubation period.

The research community, industrial partici-
pants, and software vendors are working with
the W3C to make the semantic web vision a re-
ality (Berners-Lee et al 2001).6 It will be layered,
extensible, and composable. A major part will
entail representing and reasoning with seman-
tic metadata and providing semantic markup
in the information resources. Fundamental to
the semantic infrastructure are ontologies,
knowledge bases, and agents along with infer-
ence, proof, and sophisticated semantic query-
ing capability. 

The main intent of the semantic web is to
give machines much better access to informa-
tion resources so they can be information in-
termediaries in support of humans. According
to the vision described in Berners-Lee et al.
(2001), agents will be pervasive on the web,
carrying out a multitude of everyday tasks.
Hendler describes many of the important tech-
nical issues that this approach entails, empha-
sizing the interdependence of agent technolo-
gy and ontologies (Hendler 2001). To carry out
their required tasks, intelligent agents must
communicate and understand meaning. They
must advertise their capabilities and recognize
the capabilities of other agents. They must lo-
cate meaningful information resources on the
web and combine them in meaningful ways to
perform tasks. They need to recognize, inter-
pret, and respond to communication acts from
other agents.

In other words, when agents communicate
with each other, there needs to be some way to
ensure that the meaning of what one agent
“says” is accurately conveyed to the other
agent. There are two extremes, in principle, for
handling this problem. The simplest (and per-
haps the most common) approach is to ignore
the problem altogether. That is, just assume
that all agents are using the same terms to
mean the same things. In practice, this as-
sumption will usually be built into the appli-
cation. The assumption could be implicit and
informal, or it could be an explicit agreement
among all parties to commit to using the same
terms in a predefined manner. This approach
only works, however, when one has full con-
trol over what agents exist and what they
might communicate. In reality, agents need to
interact in a much wider world, where it can-
not be assumed that other agents will use the
same terms, or if they do, it cannot be as-

be ‘processed and understood by a com-
puter,’ such as how a bill can be processed
by a package such as QUICKEN (Trippe
2001, p. 1).

There is no widespread agreement on exact-
ly what the semantic web is for or exactly what
it is. Some good ideas about what the semantic
web will be used for have emerged from the
W3C effort to define a standard ontology lan-
guage.3 From the previous descriptions, there is
clear emphasis on the information content of
the web as machine usable and associated with
more meaning.

Note that machine refers to computers (or
computer programs) that perform tasks on the
web. These programs are commonly referred to
as software agents, or softbots, and are found in
web applications.

Machine-usable content presumes that the
machine knows what to do with information
on the web. For this to happen, the machine
reads and processes a machine-sensible specifi-
cation of the semantics of the information.
This approach is robust and very challenging
and largely beyond the current state of the art.
A much simpler alternative is for the human
web application developers to hardwire the
knowledge into the software so that when the
machine runs the software, it does the correct
thing with the information. In this second sit-
uation, machines already use information on
the web. There are electronic broker agents in
routine use that make use of the meaning asso-
ciated with web content words, such as price,
weight, destination, and airport. Armed with a
built-in understanding of these terms, these so-
called shopping agents automatically peruse
the web to find sites with the lowest price for a
book or the lowest airfare between two given
cities. Thus, we still lack an adequate character-
ization of what distinguishes the future seman-
tic web from what exists today. 

Because the RESOURCE DESCRIPTION FRAMEWORK)
(RDF) is hailed by the W3C as a semantic web
language,4 some people seem to have the view
that if an application uses RDF, then it is a se-
mantic web application. This is reminiscent of
the “if it is programmed in Lisp or Prolog, then
it must be AI” sentiment that was sometimes
evident in the early days of AI. There is also
confusion about what constitutes a legitimate
semantic web application. Some seem to have
the view that an RDF tool such as CWM is one.5

This is true only in the same sense that KEE and
ART were AI applications. They were certainly
generating income for the vendors, which is
different from the companies using the tools to
develop applications that help their bottom
line. 

The web is
evolving from

containing
information

resources that
have little or

no explicit
semantics to

having a rich
semantic

infrastructure.
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sumed that the terms will mean the same
thing.

The moment one accepts the problem and
grants that agents might not use the same
terms to mean the same things, one needs a
way for an agent to discover what another
agent means when it communicates. Thus,
every agent needs to publicly declare exactly
what terms it is using and what the terms
mean. This specification is commonly referred
to as the agent’s ontology (Gruber 1993). If it
were written only for people to understand,
this specification could just be a glossary. How-
ever, meaning must be accessible to other soft-
ware agents, requiring the meaning to be en-
coded in some kind of formal language. This
approach will enable a given agent to use auto-
mated reasoning to accurately determine the
meaning of other agents’ terms. For example,
suppose agent 1 sends a message to agent 2 and
in this message is a pointer to agent 1’s ontol-
ogy. Agent 2 can then look in agent 1’s ontol-
ogy to see what the terms mean, the message is
successfully communicated, and the agent’s
task is successfully performed. At least this is
the goal. The holy grail is for this processing to
happen consistently, reliably, and fully auto-
matically. In practice, there is a plethora of dif-
ficulties, most arising from various sources of
heterogeneity. For example, there are many
different ontology representation languages,
different modeling styles, and an inconsistent
use of terminology. For further discussion, see
the section entitled Why Do Web Shopping
Agents Work?

Semantics: A 
Many-Splendored Thing 

The core meaning of the word semantics is
meaning itself. However, there is no agreement
about how this definition applies to the term
semantic web. In what follows, I characterize
the many things that one might mean when
talking about semantics as it pertains to the se-
mantic web. It is not my intention to define
the term but, rather, to make some important
distinctions that people can use to communi-
cate more clearly when talking about the se-
mantic web. 

In the context of achieving successful com-
munication among agents on the web, I am
talking about the need for agents to under-
stand the meaning of the information being
exchanged between agents and the meaning of
the content of various information sources
that agents require to perform their tasks. We
focus attention on the questions of what kinds
of semantics there are, what kinds of things

have semantics, where the semantics are, and
how they are used. We identify a kind of se-
mantic continuum ranging from the kind of
semantics that exist on the web today to a rich
semantic infrastructure on the semantic web of
the future. 

Real-world semantics: Real-world seman-
tics7 are concerned with the “mapping of ob-
jects in the model or computational world on-
to the real world … [and] issues that involve
human interpretation, or meaning and use of
data or information” (Ouksel and Sheth 1999).
An object in the model might be a tag or a
term or, possibly, a complex expression in
some language. We might also speak of the se-
mantics of a possibly large set of expressions,
which collectively are intended to represent
some real-world domain. The real-world se-
mantics correspond to the concepts in the real
world that the objects in the model refer to. 

Agent communication language perfor-
matives: In the context of the semantic web,
performatives such as request or inform in agent
communication languages (Smith et al. 1998)
require semantics to ensure that agents com-
municate effectively. 

Axiomatic semantics: An axiomatic seman-
tics for a language specifies “a mapping of a set
of descriptions in [that] language into a logical
theory expressed in first-order predicate calcu-
lus” (p. 4). The basic idea is that “the logical
theory produced by the mapping … of a set of
such descriptions is logically equivalent to the
intended meaning of that set of descriptions”
(p. 1) (Fikes and McGuinness 2001). Axiomatic
semantics have been given for RDF, RDF SCHEMA

(RDF-S), and DAML + OIL. The axiomatic seman-
tics for a language helps to ascribe a real-world
semantics to expressions in this language, in
that it limits the possible models or interpreta-
tions that the set of axioms might have. 

Model-theoretic semantics: “A model-theo-
retic semantics for a language assumes that the
language refers to a ‘world,’ and describes the
minimal conditions that a world must satisfy
in order to assign an appropriate meaning for
every expression in the language.”8 Model-the-
oretic semantics are used as a technical tool for
determining when proposed operations on the
language preserve meaning. In particular, they
characterize what conclusions can validly be
drawn from a given set of expressions indepen-
dent of what the symbols mean.

Intended versus actual meaning: A key to
the successful operation of the semantic web is
that the intended meaning of web content be
accurately conveyed to potential users of this
content. In the case of shopping agents, the
meaning of terms such as price is conveyed
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A Semantic Continuum
Three questions can be asked about how se-
mantics can be specified:  First, are the seman-
tics explicit or implicit? Second, are the seman-
tics expressed informally or formally? Third,
are the semantics intended for human process-
ing or machine processing?

These questions give rise to four kinds of se-
mantics: (1) implicit, (2) explicit and informal,
(3) explicit and formal for human processing,
and (4) explicit and formal for machine pro-
cessing.

For implicit and informal semantics, there is
no alternative to hard wiring the semantics in-
to web application software. In the case of for-
mal semantics, hard wiring remains an option;
in which case, the formal semantics serve the
important role of reducing ambiguity in speci-
fying web application behavior compared to
implicit or informal semantics. There is also
the new possibility of using automated infer-
ence to process the semantics at run time, thus
allowing for much more robust web applica-
tions in which agents automatically learn
something about the meaning of terms at run
time.

I define these four kinds of semantics to be
four somewhat arbitrary points along a seman-
tic continuum (figure 1). At one extreme, there
are no semantics at all, except what is in the
minds of the people who use the terms. At the
other extreme are formal and explicit seman-

based on human consensus. However, mistakes
are always possible because of inconsistency of
natural language usage. When formal lan-
guages are used, an author attempts to commu-
nicate meaning by specifying axioms in a logi-
cal theory. In this case, one can talk about
intended versus actual models of the theory.
There is normally just one intended model. It
corresponds to what the author wanted the ax-
ioms to represent. The actual models corre-
spond to what the author actually has repre-
sented. They consist of all the objects and
relationships, and so on, in the real world that
are consistent with the axioms. The goal is to
create a set of axioms such that the actual mod-
els include only the intended model(s).

I believe that the idea of real-world seman-
tics, as described earlier, captures the essence of
the main use of the term semantics in a seman-
tic web context. However, it is only loosely de-
fined. The ideas of axiomatic and model-theo-
retic semantics are being used to make the idea
of real-world semantics for the semantic web
more concrete.

From this discussion, it is clear that several
things have semantics: (1) terms or expres-
sions, referring to the real-world subject matter
of web content (for example, semantic mark-
up); (2) terms or expressions in an agent com-
munication language (for example, inform);
and (3) a language for representing the previ-
ous information (for example, the semantics of
DAML = OIL or RDF).9
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Figure 1. Semantic Continuum.
Semantics can be implicit, existing only in the minds of the humans who communicate and build web applications. They can also be ex-
plicit and informal, or they can be formal. The further I move along the continuum, the less ambiguity there is, and the more likely it is
to have interoperable, robust, and correctly functioning web applications.  



tics that are fully automated. The further you
move along the continuum, the less ambiguity
there is, and the more likely the web applica-
tions are to be robust, correctly functioning,
easy to maintain, and interoperable. I consider
these four points on the semantic continuum,
in turn. Note that there are likely to be many
cases that are not clear cut and, thus, arguably
might fall somewhere in between.

Implicit Semantics In the simplest case, the
semantics are implicit only. Meaning is con-
veyed based on a shared understanding de-
rived from human consensus. A common ex-
ample of this case is the typical use of XML tags,
such as price, address, or delivery date. No-
where in an XML document, or DOCUMENT-TYPE

DEFINITION (DTD) or SCHEMA, does it say what
these tags mean.10 However, if there is an im-
plicit shared consensus about what the tags
mean, then people can hardwire these implicit
semantics into web application programs, us-
ing screen scrapers and wrappers. This example
illustrates how one implements shopping
agents that search web sites for the best deals.
From the perspective of mature commercial ap-
plications that automatically use web content
as conceived by semantic web visionaries, this
approach is at or near the current state of the
art. The disadvantage of implicit semantics is
that they are rife with ambiguity. People often
don’t agree about the meaning of a term. For
example, prices come in different currencies,
and they might or might not include various
taxes or shipping costs. The removal of ambi-
guity is the major motivation for the use of
specialized language in legal contracts. The
costs of identifying and removing ambiguity
are very high.

Informally Expressed Semantics  At a further
point along the continuum, the semantics are
explicit and are expressed in an informal nota-
tion or language, for example, a glossary or a
text specification document. They are mainly
for humans. Given the complexities of natural
language, machines have an extremely limited
ability to make direct use of informally ex-
pressed semantics. There are many examples of
informally expressed semantics, usually found
in specification documents written in (often
highly technical) natural language: (1) the
meaning of terms in the Dublin core;11 (2) the
meaning of tags in HTML such as <h2>, which
means second-level header; (3) the meaning of
expressions in modeling languages such as the
UNIFIED MODELING LANGUAGE (UML);12 (4) the infor-
mal semantics in the original specification of
RDF SCHEMA;13 (5) the model theory (formal se-
mantics) of RDF SCHEMA that is developed subse-
quently (does not include the axiomatic se-

mantics that is expressed in a formal
language).14

Typically, the semantics expressed in infor-
mal documents are hard wired by humans in
working software. Compiler writers use lan-
guage-definition specifications to write compil-
ers. The specifications for RDF and UML are used
to develop modeling tools such as CWM and RA-
TIONAL ROSE. 

I characterized this (somewhat arbitrary)
point on the semantic continuum by having
the semantics expressed in an informal lan-
guage. However, we can further distinguish
whether the semantics are informal or formal.
The latter case reduces ambiguity and can be
seen as further along the semantic continu-
um,15 which helps to avoid inconsistent and in-
compatible implementations. Users might no-
tice features and start depending on them,
resulting in problems if interoperability is re-
quired or implementations change. For these
and other reasons, informal semantics are
sometimes inadequate, which motivates efforts
to create formal semantics, for example, for UML

(Evans et al. 1998),16 RDF, and DAML + OIL.17

Formal semantics are not just playthings for
logicians and academics. Given the emerging
importance of RDF and the semantic web, ven-
dors were demanding to know what the RDF

specification actually meant.18

Although the formal semantics are a big
help, if they are expressed informally, they are
not amenable for machine processing. Next, I
consider the case of semantics expressed in a
formal language. I distinguish between whether
they are intended for human processing only or
for machine processing as well.

Formally Expressed Semantics for Human
Processing Further along the continuum,
there are explicit semantics expressed in a for-
mal language. However, they are intended for
human processing only. These semantics can
be thought of as formal documentation or as
formal specifications of meaning. Some exam-
ples of this include the following: 

Modal logic is utilized to define the semantics
of ontological categories such as rigidity and
identity (Guarino et al. 1994). These descrip-
tions are for the benefit of humans, to reduce
or eliminate ambiguity in what is meant by
these ideas.

Modal logic is used to define the semantics
of performatives such as inform and request in
agent communication languages (ACLs)
(Smith et al. 1998). Humans use the formal de-
finitions to understand, evaluate, and compare
alternative ACLs. They are also used to imple-
ment agent software systems that support
these notions.
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hand, and it is intended for machine process-
ing. When the compiler encounters the sym-
bol, it places a call to the appropriate proce-
dure. The meaning of the symbol is what
happens when the procedure is executed. The
agent determines the meaning of the symbol
by calling the appropriate procedure, so in
some sense, these symbols can be viewed as
having machine-processible semantics.

I am instead focusing on a declarative view.
From this perspective, I ask how an agent can
learn the meaning of a new term from a formal,
declarative specification of its semantics. Ideal-
ly, this learning should occur without making
any assumptions at all. In this case, all symbols
might as well be in a never-before-seen script
from a long-extinct intelligent species on Mars.
There is no knowledge of the meaning of the
symbols and the rules of syntax for the lan-
guage, nor is there any information on the se-
mantics of the language. This general case is the
most challenging kind of cryptography. 

Issues and Assumptions
Cryptography is extremely difficult for hu-
mans, never mind machines, so we have to
start making some assumptions. Here, I consid-
er some key issues and assumptions.

Language heterogeneity: Different ontol-
ogy languages are often based on different un-
derlying paradigms (for example, description
logic, first-order logic, frame-based representa-
tion, taxonomy, semantic net, and thesaurus).
Some ontology languages are very expressive,
and some are not. Some ontology languages
have a formally defined semantics, and some
do not. Some ontology languages have infer-
ence support, and some do not. If all these dif-
ferent languages are to be allowed, then there
is the challenging problem of translating be-
tween them. For simplicity then, I assume that
the expressions encountered by our agent are
from a single language whose syntax and se-
mantics are already known to the agent, for ex-
ample, RDF SCHEMA or OWL. 

Incompatible conceptualizations: Even
with a uniform language, there can still be in-
compatible assumptions in the conceptualiza-
tion. For example, in Hayes (1996), it is shown
that two representations for time, one based on
time intervals and another based on time
points, are fundamentally incompatible. That
is, an agent whose time ontology is based on
time points can never incorporate the axioms
of another agent whose ontology for time is
based on time intervals. From a logic perspec-
tive, the two representations are like oil and
water. Thus, I further assume that the concep-
tualizations are compatible.

Many axioms and definitions in the ENTER-
PRISE ontology (Uschold et al. 1998) were creat-
ed without the expectation that they would be
used for automated inferencing (although this
remained a possibility). The primary purpose
was to help communicate the intended mean-
ing to people.

Formal semantics for human processing can
go a long way toward eliminating ambiguity,
but because there is still a human in the loop,
there is ample room for error.

Note that in all practicality, there is little dif-
ference between formal semantics expressed
informally and formal semantics expressed for-
mally but intended only for human process-
ing. In both cases, the processing is intended
for humans, and the formality serves to reduce
ambiguity.

Formally Expressed Semantics for Machine
Processing Finally, there is the possibility of
explicit, formally specified semantics that are
intended for machines to directly process using
automated inference. The idea is that when
new terms are encountered, it is possible to au-
tomatically infer something about their mean-
ing and, thus, their use. Inference engines can
be used to derive new information for a wide
variety of purposes. I explore this topic in
depth in the next section.

Machine-Processible Semantics 
The defining feature of the semantic web is ma-
chine-usable content, which implies that the
machine knows what to do with the web con-
tent it encounters. This does not mean that
there is any explicit account of the semantics.
Instead, the semantics (whether implicit, infor-
mal, or formal) can be hardwired into the web
applications. A more robust approach is to for-
mally represent the semantics and allow the
machine to process it to dynamically discover
what the content means and how to use it—I
call this machine-processible semantics. This goal
might be impossible to achieve in its full gen-
erality, so I restrict this discussion to the fol-
lowing specific question: How can a machine
(that is, software agent) learn something about
the meaning of a term that it has never en-
countered before enough to accomplish its
task? 

One way to look at this questions is from a
procedural perspective. For example, how does
a compiler know how to interpret a symbol
such as + in a computer language, or how does
an agent system know what to do when it en-
counters the performative inform? The possibly
informal semantics of these symbols are hard-
wired into a procedure by a human before-

… how [can]
an agent …

learn the
meaning of a

new term
from a
formal,

declarative
specification

of its
semantics[?] 
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Term heterogeneity and different model-
ing styles: Even if I assume a shared language
and compatible conceptualizations, it is still
possible, indeed likely, that different people
will build different ontologies for the same do-
main. Two different terms can have the same
meaning, and the same term can have two dif-
ferent meanings. The same concept can be
modeled at different levels of detail. A given
idea can be modeled using different primitives
in the language. For example, is the idea of be-
ing red modeled by having the attribute color
with value red, or is the idea modeled as a class
called something like RedThings? Is it both,
where either (1) they are independent or (2)
RedThings is a derived class defined in terms of
the attribute color and the value red?

In the section entitled Machine-Processible
Semantics, I spoke of the intended versus the
actual models of a logical theory. The former
correspond to what the author of the theory
wanted to represent. The actual models corre-
spond to what the author actually did repre-
sent. The actual models consist of all the ob-
jects,  relationships, and so on, in the real
world that are consistent with the axioms. Be-
cause the machine has access to the axioms, it
might, in principle, be possible for a computer
to determine whether two logical theories are
equivalent and, thus, whether the semantics of
two terms are identical. This determination
would be true, for example, if the two theories
had the same actual models. However, even if
the exact same language is used, and there is
substantial similarity in the underlying con-
ceptualizations and assumptions, the inference
required to determine whether two terms actu-
ally mean the same thing is intractable. 

For a computer to automatically determine
the intended meaning of a given term in an
ontology is an impossible task, in principle; it
would require seeing into the mind of the au-
thor. Therefore, a computer cannot determine
whether the intended meaning of two terms is
the same. This situation is analogous to formal
specifications for software. The specification is
what the author actually said he/she wanted
the program to do. It might be possible to ver-
ify that a computer program conforms to this
specification, but it will never be possible to
verify that a program does what the author ac-
tually wanted it to do.19

To reduce the problems of term heterogene-
ity and different modeling styles, I further as-
sume that the agent encounters a term that ex-
plicitly corresponds to a publicly declared
concept that it already knows about (for exam-
ple, using markup). 

An Example
I now consider a simple example of how ma-
chine processing of formal semantics can be
utilized to do something practical with today’s
technology. As you can see, automatic ma-
chine processing of formal semantics is fraught
with difficulties. I have made the following
simplifying assumptions: (1) all parties agree to
use the same representation language, (2) the
conceptualizations are logically compatible,
and (3) there are publicly declared concepts
that different agents can use to agree on mean-
ing.

Suppose that an agent is tasked with discov-
ering information about a variety of mechani-
cal devices. It encounters a web page with the
text FUEL PUMP (figure 2). Lacking natural
language–understanding capability, the term is
completely ambiguous. You can reduce the am-
biguity by associating the text FUEL PUMP with
a formally defined term fuel-pump (this is called
semantic markup). The agent might never have
encountered this concept before. In this case,
the definition for the new term is defined in
terms of the term pump, which, in turn, is de-
fined in an externally shared hydraulics ontol-
ogy. The agent can learn that fuel-pump is a
subclass of pump, which, in turn, is a subclass
of mechanical-device. The agent now knows that
fuel-pump is not a typewriter or a spaceship be-
cause they are not kinds of pumps. The agent
has no knowledge of what kind of pump it is,
only that it is some kind of pump. However,
this information is sufficient to allow the agent
to return this document as relevant to
mechanical devices, even though it has never
before heard of the term fuel-pump. It is possi-
ble to do this processing with today’s technol-
ogy using research tools that have been devel-
oped (Decker et al. 1999).20 This technology is
also being commercialized (Staab and Maedche
2001).21 Scale remains a significant barrier to
commercial success. 

This example illustrates the importance of
semantic markup and the sharing of ontolo-
gies. It also demonstrates the importance of
formal ontologies and automated inference.
Inference engines can be used to derive new in-
formation for a wide variety of purposes; in
particular, a formally specified ontology allows
agents to utilize theorem-proving and consis-
tency-checking techniques to determine
whether they have agreement on the seman-
tics of their terminology.

The ability of the agent to infer something
about the meaning of fuel-pump depends on
the existence of a formal semantics for ontol-
ogy languages such as OWL. The language se-
mantics also allow the agent to infer the mean-

For a
computer to
automatically
determine the
intended
meaning of a
given term in
an ontology is
an impossible
task….
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cent book on the semantic web (Daconta et. al.
2003). For further discussion of inference on
the semantic web, see Horrocks (2002) and
Jasper and Tyler (2001).

Why Do Web 
Shopping Agents Work?

I have taken some time to consider what peo-
ple might mean when they talk about the se-
mantic web. There appears to be consensus
that the key defining feature is machine-usable
web content. However, I argue that by this de-
finition there is an important sense in which
the semantic web already exists. For example,
travel and bookseller shopping agents auto-
matically access web pages looking for good
deals. I don’t quibble about whether this
should “count” or how the definition of se-
mantic web might need to be modified accord-

ing of complex expressions built up using lan-
guage primitives. The semantics of the lan-
guage are not machine processible; they are
written for humans only. People use them to
write inference engines or other software to
correctly interpret and manipulate expressions
in the language.

Note that today’s spectacularly impressive
search engines by and large do not use formal
semantics at all. Overall it remains an un-
proven conjecture that semantic approaches
will have significant impact anywhere on the
web. For example, there appear to be insuffi-
cient business drivers to motivate venture cap-
italists to heavily invest in semantic web com-
panies. Fortunately, the W3C is moving
forward on this issue by identifying a wide va-
riety of use cases (going well beyond search) to
drive the requirements for a standard web on-
tology language (OWL).22 Also, a strong business
case for the semantic web is put forward in a re-
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Semantic Markup
What does it mean?

The purpose of this review is to 
remind operators of the

existence of the Operations
Manual Bulletin 80 -1, which

provides information regarding flight
operations with low fuel quantities,

and to provide supplementary
information regarding main tank
boost pump low pressure indications.
 
 797 FUEL PUMP LOW PRESSURE
INDICATIONS

When operating 797 airplanes with
low fuel quantities for short

Shared Hydraulics Ontology (SHO)
(pump has
      (superclasses (mechanical-device))
      (text-def (“A device for …”)))
(every pump has
(physical-parts (piston, valve, cylinder))
(device-purpose (Pumping-A-Fluid)))

Hey, I know
this ontology 

<concept id = fuel-pump > FUEL PUMP </concept>

(fuel-pump has
        (superclasses SHO_pump)) 

Figure 2. Formal Semantics for Machine Processing.
An agent is searching for information about mechanical devices, as defined in a shared hydraulics ontology (SHO). A document contains
the term FUEL PUMP, which the agent has never encountered. Semantic markup reveals that it refers to the concept FUEL PUMP, which is
a kind of pump, which is, in turn, defined in SHO as a kind of mechanical device. The agent infers that the document is relevant.



ingly. It is more useful to regard these examples
collectively as a degenerate case of the seman-
tic web. In this section, I examine why web
shopping agents work, what their limitations
are, and what you can expect in the future.

Requirements for 
Machine-Usable Content
The following requirements are fundamental
for enabling machines to make use of web con-
tent. 

Requirement 1: The machine needs to
know what to do with the content that it en-
counters. 

For example, it needs to recognize that it has
found the content it is looking for and to exe-
cute the appropriate procedures when it has
been found. Ultimately, it is humans that write
the programs that enable the machines to do
the right thing.

Requirement 2: Humans must know what
to do with the content that the program is ex-
pected to encounter.

Requirement 3: Humans know the meaning
of the expected content or are able to encode a
procedure that can learn the meaning. 

In determining what makes the web shop-
ping agent examples work, consider the follow-
ing questions: (1) Hardwiring: What is hard-
wired and what isn’t? (2) Agreements and
public declarations: How much agreement is
there among different web sites in their use of
terminology and in the similarity of the con-
cepts being referred to? Are agreements pub-
licly declared? (3) Specification of semantics:
To what extent are the semantics of the con-
tent clearly specified? Is it implicit, explicit and
informal, or formal? 

Hardwiring The general case of automatical-
ly determining the meaning of web content is
somewhere between intractable and impossi-
ble. Thus, a human will always be hardwiring
some of the semantics into web applications.
The question is what is hardwired and what is
not? Shopping agent applications essentially
hardwire the meaning of all the terms and pro-
cedures. The hardwiring enables the machine
to know how to use the content. The hard-
wiring approach is not robust to changes in
web content. 

The alternative is allowing the machine to
process the semantics specifications directly.
Thus, the semantics of the representation lan-
guages are made public and hardwired into the
inference engines used by the applications.
This approach gives an additional degree of
flexibility because you do not hardwire the
meaning of every term. By making various as-
sumptions regarding languages, conceptualiza-

tions, and shared ontologies, one can get the
machine to process formal semantics specifica-
tions directly and do useful things (figure 2). 

Agreements and Public Declarations In
general, the more agreement there is, the bet-
ter. Making agreements public is critical for the
semantic web to take off. For example, the
news and magazine publishing industries have
developed NEWSML and PRISM (publishing re-
quirements for industry standard metada-
ta).23,24 Agreements can also lessen the amount
of change, alleviating some maintenance is-
sues.

Although I brought up the issue of public
agreements in the context of machine-proces-
sible semantics, it is equally important when
the semantics are hardwired by the human. For
example, consider the Dublin core metadata el-
ement aet (DCMES), a set of 15 terms for describ-
ing resources.25 The elements include such
things as title, subject, and date and are de-
signed to facilitate search across different sub-
ject areas. The meaning for these elements is
defined in English, not a formal language. Nev-
ertheless, if this meaning is hardwired into a
web application, this application can make use
of web content that is marked up and points to
the Dublin core elements. 

Semantics Specification Agreements about
semantics should clearly be specified so that
humans can build reliable and correctly func-
tioning web applications. In the absence of
agreements, effort is required to make sure that
your application will do the right thing at each
web site that uses terms in different ways (for
example, only some web sites include taxes in
the price information), thus creating more
work in programming because a different ver-
sion is needed for every web site. 

Even in the absence of agreements, it is very
important for the semantics of web site con-
tent to clearly be specified (possibly informal-
ly). Otherwise, there will be a lot of guesswork,
thus undermining the reliability of applica-
tions. When information from different web
sites needs to be integrated, there must be
some way to map the different meanings to
each other. Ontologies in conjunction with se-
mantic mapping and translation techniques
play a key role in semantic integration (Brad-
shaw et al. 2003). 

Web Shopping Agents Work because…
I regard the web shopping agents as degenerate
examples of the semantic web. It is important
to understand why they are able to make use of
today’s web content in the apparent absence of
semantics. 

Here I show that they are able to make use of

By making
various
assumptions
regarding
languages,
conceptuali-
zations, and
shared
ontologies,
one can get
the machine
to process
formal
semantics
specifications
directly and
do useful
things….
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how to recognize the content they are looking
for, and they must know what to do when they
find it. This knowledge requires access to the
meaning (that is, semantics) of the content,
one way or the other. The manner in which the
machine can access the semantics of web con-
tent is at the heart of much confusion about
the semantic web. The main objective of this
article was to shed light on this issue.

I argued that paradoxically, today’s web
shopping agents demonstrate the defining fea-
ture of a semantic web application without any
explicit representation of semantics. Further-
more, no one would seriously regard them as
examples of the semantic web. I resolved the
paradox by regarding shopping agents as de-
generate cases of the semantic web. I hope that
this work will inspire people to generate “gen-
uine” examples of the semantic web. I antici-
pate that progress in development of the se-
mantic web will take place by (1) moving along
the semantic continuum from less clearly spec-
ified (implicit) semantics to more clearly spec-
ified (formal) semantics; (2) reducing the
amount of hardwiring that is necessary or
changing which parts are hardwired and which
are not (This approach will entail a correspond-
ing increase in the amount of automated infer-
ence to determine the meaning of web con-
tent, thus enabling agents on the semantic web
to correctly perform their tasks. The impor-
tance of compelling use cases to drive the de-
mand for this approach cannot be underesti-
mated.); (3) increasing the amount of public
standards and agreements, thus reducing the
negative impact of today’s pervasive hetero-
geneities; and (4) developing technologies for
semantic mapping and translation for the
many cases where integration is necessary but
where it is not possible to reach agreements.

Finally, I want to stress that there is no need
for semantics envy. The needs of the applica-
tion dictate the appropriate place to be along
the semantic continuum. What is right is what
works. For many applications, there is no need
for rigorous formal approaches because the
cost is too high. There might not be a need for
machines to automatically determine the
meaning of terms; the human can simply hard-
wire this meaning into the software. Web shop-
ping agents know how to find the fare for a giv-
en trip or the price of a book. Every browser
knows that <h2> means it is a second-level
header. There is no need to do inference; it is
sufficient to hardwire the meaning of <h2> in-
to the browser. I believe that in the short and,
possibly, the medium term, approaches that do
not make use of machine-processible seman-
tics are likely to have the most impact on the

today’s web content because all three require-
ments from the section Requirements for Ma-
chine-Usable Content are met. I first provide
answers to the three questions in that section:

Question 1: Everything is hardwired. 
Question 2: There is no agreement among

different web sites in their use of terminology,
although there is very strong overlap in the un-
derlying concepts that are relevant. We are
aware of no public standards, although there
could well be standard XML SCHEMA for the trav-
el and bookseller industries, as there are for
other industries.

Question 3: I assume that the semantics of
the terms and concepts are not specified at all,
or if so, they are specified informally. 

I now consider the three requirements for
machine-usable content in reverse order. 

Requirement 3: Humans know the meaning
of the expected content, which seems surpris-
ing, given the lack of specification of terms and
any public standards. The meaning is available
instead because there is sufficient human con-
sensus on the use of terms such as price and
destination. One can think of this consensus as
an implicit shared semantic repository, which en-
ables web application developers to make edu-
cated guesses and develop useful software.

Requirement 2: Humans know what to do
with the content, which follows from under-
standing what content means and knowing
the specifications of the functions of the web
agents.

Requirement 1: The machine knows what
to do with the content because the human pro-
grammers hardwired the semantics of the con-
tent and created appropriate procedures to be
executed.

Shopping agents can work even if there is no
automatic processing of semantics; they can
work without any formal representation of se-
mantics; they can even work with no explicit
representation of semantics at all. The key to
enabling shopping agents to automatically use
web content is that the meaning of the web
content that the agents are expected to en-
counter can be determined by the human pro-
grammers who hardwire it into the web appli-
cation software.

Summary and Conclusions
There are many different views of what the se-
mantic web is and how it can or should evolve.
I attempted to show a variety of perspectives
and possibilities. The most frequently quoted
defining feature of the semantic web is ma-
chine-usable web content. Fundamentally, this
definition requires that machines must know

Making
agreements

public is
critical for the
semantic web

to take off. 
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development of the semantic web. Based on
this analysis, I conjecture that the following is
a law of the semantic web:

The more agreement there is, the less it is
necessary to have machine-processible se-
mantics.

Eventually, there will be a need for automat-
ed semantics processing. Relying too heavily
on hardwiring semantics can result in different
implementations having different functions,
which, at best, means interoperation is diffi-
cult; at worst, there might be incorrect func-
tions. Another disadvantage of the hardwiring
approach is brittleness and consequent main-
tenance difficulties. 

In closing, there are many answers to the
question, Where are the semantics in the se-
mantic web? First, they are often just in the hu-
man-as-unstated assumptions derived from
implicit consensus (for example, price on a
travel or bookseller web site). Second, they are
in informal specification documents, for exam-
ple, the semantics of UML or RDF SCHEMA. Third,
they are hardwired in implemented code (for
example, in UML and RDF tools and in web shop-
ping agents). Fourth, they are in formal speci-
fications to help humans understand or write
code (for example, a modal logic specification
of the meaning of inform in an agent commu-
nication language). Fifth, they are formally en-
coded for machine processing, for example,
(fuel-pump has (superclasses SHO: pump)).
Sixth, they are in the axiomatic and model-
theoretic semantics of representation lan-
guages (for example, the formal semantics of
RDF).

Finally, I want to note that there are many
other important issues for the semantic web
that I merely touched on or failed to address in
this article. These issues include web services,
semantic markup, semantic integration, and
use of natural language–processing techniques
to glean the semantics of natural language doc-
uments. 
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