
SUMMER 2003 101

Book Reviews

This is a beautiful book, in con-
ception and execution. What
Ray Reiter has done has taken a

set of ideas worked out by him and
his collaborators over the last 11 years
and recrystallized them into a sus-
tained and consistent presentation.1

This is not a collection of those pa-
pers but a complete rewrite that
avoids the usual repetition and nota-
tional inconsistency that one might
expect. It makes one wish everyone
as prolific as Reiter would copy his
example—but because that’s unlikely,
we must be grateful for what he has
given us.

In case you haven’t heard, Reiter
and his crew, starting with the publi-
cation of Reiter (1991), breathed new
life into the situation calculus (Mc-
Carthy and Hayes 1969) that had
gotten the reputation of being of
limited expressiveness. The basic
concept of the calculus is, of course,
the situation, which we can think of
as a state of affairs, that is, a com-
plete specification of the truth values
of all propositions (in a suitable logi-
cal language), although that’s closer
to McCarthy’s and Hayes’s traditional
formulation than the analysis Reiter
settles on (which I describe later).
Any atomic formula whose truth val-
ue can change over time must be
written with a predicate that takes a
situation as argument. We might
write child(person1, person2) if we ana-
lyze a domain as not allowing the set
of children or parents of a person to
change. However, if the analysis
must take into account time scales in
which new children can be born, we

The second problem is how to deal
with the notorious frame problem
and its various relatives (McCarthy
and Hayes 1969; Pylyshyn 1987). The
problem is that there is no implicit
relationship between the truth values
of a proposition in s and do(a, s), or
do(a2, do(a1, s)). We can only state
these relationships by adding axioms
of some sort. Getting the axioms
right, and getting algorithms based
on them right, has not been easy.

As a result, the basic situation cal-
culus lived as a textbook curiosity for
several years. Researchers interested
in practical applications of temporal
reasoning, such as automated plan-
ning, kept the basic ontology of the
calculus but focused on efficient al-
gorithms to the neglect of logical
foundations. Researchers interested
in the underlying logic looked for
ways of getting the logic to work,
most ingeniously by resorting to
nonmonotonic techniques.

Reiter began putting things back
on track by addressing both these
questions. He adopted and extended
the solution to the frame problem of
Haas (1987), Schubert (1990), and
Davis (1990) and noticed that the ba-
sic do(a, s) notation does not in fact
rule out the occurrence of interesting
events between s and do(a, s). The re-
sult has been a stream of important
papers that have given new life to
the attempt to formalize realistic rea-
soning in temporal contexts.

Knowledge in Action is a recapitula-
tion of this work. It begins by ex-
plaining the framework and the solu-
tion to the frame problem. Chapters
4 and 5 then give a rigorous basis for
the situation calculus and for logic-
programming reasoning in the im-
portant special case where the closed-
world assumption holds. This is the
assumption that any atomic formula
that does not follow from a given set
of axioms is false. A key result of
Chapter 4 is the precise specification
of how to regress a formula Q, that is,
to derive the weakest formula P
whose truth in a situation will make
Q true in a later one. A formula can
be regressed through any number of
actions, so that to deduce whether Q
is true in Sk = do(actionk, do(actionk–1,
..., do(action1, S0))), one can use re-

Ray Reiter’s
Knowledge in Action

A Review

Drew McDermott

■ Knowledge in Action: Logical Foun-
dations for Specifying and Imple-
menting Dynamical Systems, Ray
Reiter, MIT Press, 448 pp., 2001,
ISBN 0-262-18218-1.

must write instead child(person1, per-
son2, s), where s is a term denoting a
situation. The meaning is that in s,
person2 is a child of person1; in other
situations, this relationship might
not hold true.

The basic notation for expressing
change in the situation calculus is
do(a, s), meaning the situation re-
sulting from executing the action a
starting in situation s. To express the
fact that adopting a person makes
him/her one’s child, we might write

(∀p1, p2, s)(child(p1, p2,
do(adopt(p1, p2), s)))

“In the situation resulting from exe-
cuting the action adopt(p1, p2) in s,
p2 is a child of p1.” Note that the no-
tation does not make explicit who is
executing the action; I use the term
target agent to denote the implicit ex-
ecutor, connoting the agent who
might actually carry out the actions
being reasoned about.

The notation do(a, s) seems to
raise two troublesome questions. The
first is, What happens between s and
do(a, s)? The answer seems to be
“Nothing” because traditional ax-
ioms specify truth values of proposi-
tions in do(a, s) as a function of
their values in s, which doesn’t leave
much of a role for situations, if there
are any, between the two.

Copyright © 2003, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2003 / $2.00

gression to produce a formula Q0
such that if Q0 is true in S0, Q is true
in Sk. This fact allows one to use a
logic program for the contents of S0
to answer queries about all later situa-
tions.

Chapter 6 introduces the GOLOG

language, a language for describing
actions in terms of the situation cal-
culus. It allows for conditional; itera-
tive; and above all, nondeterministic
actions. The nondeterminism is im-
portant because a key reasoning task
using GOLOG is to specify a nondeter-
ministic program and then prove (us-
ing Prolog) that there is a successful
way to execute it. This is an attractive
way to find classical plans (that is, se-
quences of actions) to achieve goals;
the GOLOG program is a hint about
what the plan looks like, and a suc-
cessful execution trace is a plan.

Chapter 7 is the eye-opener for
those who thought that the situation
calculus can’t talk about the passing
of continuous time. All you have to
do is require that every action in-
stance have a time of occurrence. In-
stead of jumpOver(x), you might
have the action jumpOver(x, t). Even
better, you can have two actions,
startJumpOver(x, t1) and endJump-
Over(x, t2), with the proposition
jumpingOver(x) true in the interval
[t1, t2]. It’s not hard to generalize this
idea to continuous changes, so that
altitude(s) is the real number denot-
ing the jumper’s (that is, the target
agent’s) height above the ground in
situation s. A function such as alti-
tude, with a situation argument, is
called a fluent. (A predicate augment-
ed with a situation argument, such as
child, is called a relational fluent.
Sometimes the term fluent is applied
to the terms or atomic formulas con-
structed with functional and relation-
al fluents.)

It is important to realize that Reit-
er’s ontology does not mention a sit-
uation—let alone a continuum of sit-
uations—between do(startJumpOver
(x, t1), s) and do(endJumpOver(x, t2),
do(startJumpOver(x, t1), s)). In his
framework, a situation is the result of
a sequence of events separated by
noninfinitesimal time intervals. Thus
far, we have talked only about event
sequencess of the form do(actionk,

do(actionk – 1, ..., do(action1, S0))), that
is, actions taken by a single agent.
However, in Chapter 7, the scope is
broadened to include actions taken
by nature, that is, events that occur
when their preconditions are true,
without any agent having to decide
to make them occur. We can use
these autonomous events to provide
a more natural representation of the
jumpOver example in which the end
of the jump occurs automatically
when the jumper hits the ground.

In spite of the addition of such au-
tonomous events, it is still the case
that a situation is a sequence of dis-
crete entities. It might sound as if
there is a problem here: How can we
reason about continuous change if
quantities jump from one value to
another from one situation to the
next? The answer is that a different
formal language must be used in talk-
ing about change between situations,
namely, the language of equations
with elapsed time as an unknown
variable. In the jumpOver example,
the jump altitude could be

jumpvel(s) × (t – start(s)) – 1/2G(t – start(s))2

Here start(s) is the time a situation
starts; t is some subsequent time. The
possible values of t are the positive re-
al numbers, but these are not the
times of situations. Instead, con-
straints on t are used to specify when
the next action might, or the next
autonomous event must, occur and,
hence, when the next situation can
be constructed. In our continuing ex-
ample, the event landAfterJump(t)
occurs when t is such that the jump
altitude gets back to zero. The net re-
sult is that there are no situations be-
tween do(jumpOver(x, t1), s) and
do(landAfterJump(t2), do(jumpOv-
er(x, t1), s)). However, there don’t
have to be! All the reasoning about t
– start(do(jumpOver(x, t1), s)) is for
the purpose of finding the value of
t2–t1, so that the situation resulting
from landAfterJump can be con-
structed.2

Hence, all situations can be located
in a tree rooted at the distinguished
initial situation S0. The situation
do(an, do(an–1, ...(do(a1, S0)))) corre-
sponds to the branch labeled a1, …,
an. The number of children in each
situation seems to be tacitly assumed

to be finite but only because actions
with numeric-valued parameters are
not in Reiter’s focus.

This ontology of situations suffices
for various applications and ramifica-
tions of the basic calculus. In Chapter
11, “Sensing and Knowledge,” some
further evolution becomes necessary.
To this point, actions have been char-
acterized in terms of their effects,
meaning the changes they cause in
the values of fluents. Actions have
not had any effect on the target
agent’s knowledge of the values of
fluents; more precisely, they have not
had any unpredictable effect on
knowledge. In the situation do(buy
(ob21), s), the target agent owns ob21
and implicitly knows it owns ob21.

Sensing actions require a change
because the only purpose of sensing
is to change what you know in un-
predictable ways; as Reiter points out,
if the reasoner knows the result of a
sensing action, there is no point in
actually carrying it out. The change is
to adopt the idea that for an agent A
to believe proposition P is for P to be
true in all possible worlds that are
compatible with A’s beliefs. This ap-
proach is originally owed to Hintikka
(1961) and Kripke (1963) and was ap-
plied to temporal reasoning by Moore
(1980). Reiter adopts Moore’s formu-
lation and integrates it with his situa-
tion-calculus framework.

More formally, Reiter identifies
possible worlds with situations and
provides a relation K such that K(s′, s)
means that in situation s, the set of
worlds compatible with the target
agent’s beliefs includes s′. In this
scheme, the statement that in S0 (the
initial situation), the target agent be-
lieves that it’s in Kansas would be
represented thus:

(∀s′)(K(s′, S0) ⊃ in(Kansas, s′))

The statement that the target agent
does not believe that it’s in Kansas
comes out as

(�s′)(K(s′, S0) � ¬in(Kansas, s′))

Note that this formula is distinct
from a statement that the agent be-
lieves it is not in Kansas, whose for-
mulation is left as an exercise for the
reader.

The only change that is required in
the ontology to accommodate the K

102 AI MAGAZINE

Book Reviews

relation is to allow for multiple trees,
rooted at multiple initial situations.
However, there is still a distinguished
S0; all other initial situations are relat-
ed to it through the K relation.

On this ontological foundation,
Reiter builds a theory of knowledge-
producing actions, those that narrow
the set of alternative possible worlds.
The hard part is to characterize re-
gression for such actions, that is, how
facts of the form know(…) in later sit-
uations depend on the truth of facts
in the initial situation. Obviously, if
knowledge-producing actions are in-
volved, the contents of the initial sit-
uation are not the only determinant
of the truth values of propositions in
later situations. However, there are
subtle problems about exactly what
the target agent knows and does not
know in the initial situation and,
hence, how its knowledge changes
over time. Reiter’s exploration of
these problems is clear and deep.

There are many more topics cov-
ered in Knowledge and Action, includ-
ing databases, progression (forward
inference from situations to their suc-
cessors), planning, open worlds, ex-
ogenous events, and decision theory.
You have to read it to appreciate its
richness.

The book is not without weakness-
es. There are many theorems but few
proofs. Many are left as exercises for
the reader; for others, one must go
back to the original papers.

Much of the book is concerned
with extending GOLOG to accommo-
date each new feature added to the
basic situation calculus. I don’t quite
understand why GOLOG is so impor-
tant. Apparently, the main reasons
are that the meaning of any GOLOG

program can be given as a translation
into the situation calculus and that
GOLOG interpreters can be written in
Prolog in a natural way (or “ways,”
depending on exactly which version
of GOLOG we are talking about). The
first reason turns out not to be too
surprising; for every GOLOG program
ρ, all we have to do is define the rela-
tion Do(ρ, s, s′), specifying that s′ is a
possible situation resulting from exe-
cuting ρ starting in s.

I believe that the second reason for
the importance Reiter attaches to

GOLOG is that it is possible, with a little
ingenuity, to write Prolog programs—
GOLOG interpreters—to find s’ given ρ
and a description of s. In the early go-
ing, the purpose of the GOLOG inter-
preter is to find a deterministic se-
quence of actions that implements a
nondeterministic ρ. By nondeterminis-
tic, I mean that the program contains
actions of the form A1 | A2, meaning
“Either A1 or A2.” Because A1 and A2
can be elaborate actions with hard-to-
predict consequences, it can be non-
trivial and useful to verify that there is
a way to make all the choices that
arise in the course of executing a pro-
gram without running into a dead
end. However, in later chapters, the
purpose keeps changing. For example,
in the chapter on decision theory, the
purpose is to compute the probability
that a given proposition is true after
executing a deterministic GOLOG pro-
gram (one with no occurrences of |).
This reasoning task is quite different,
and every chapter seems to discuss yet
another one. Some of the tasks are
natural, but others seem to have been
chosen because they can be carried
out by relatively simple Prolog pro-
grams. If one inquires what reasoning
tasks are actually studied by re-
searchers in planning, knowledge the-
ory, and decision theory, one comes
up with a rather different set. It might
have been more interesting if Reiter
had thought about how his formalism
would apply in these contexts.

“If Reiter had …” is a hard phrase
to write. It grieves me deeply to know
that we will never find out what Ray
Reiter would have come up with as
he continued to work in the area of
temporal reasoning. We will have to
be content with the research present-
ed in his wonderful book.

Notes
1. As most readers know, Ray Reiter died
in September 2002 during the writing of
this review. I decided to keep references to
him in the tense one would use for some-
one still living because it’s so hard not to
think of him that way.

2. In the programs presented in the book,
the value is found by using the built-in
constraint solver of a particular Prolog im-
plementation. One topic that is not dis-
cussed is the use of more general differen-
tial equations to describe autonomous

processes; they would be necessary for
many practical applications.

References
Davis, E. 1990. Representations of Common-
sense Knowledge. San Francisco, Calif.:
Morgan Kaufmann.

Haas, A. R. 1987. The Case for Domain-
Specific Frame Axioms. In The Frame Prob-
lem in Artificial Intelligence, ed. F. R. Brown,
343–348. San Francisco, Calif.: Morgan
Kaufmann.

Hintikka, J. 1961. Modalities and Quan-
tification. Theoria 27(61): 119–128.

Kripke, S. 1963. A Semantical Analysis of
Modal Logic I: Normal Modal Proposition-
al Logic. Zeitschrift für Mathematische Logik
under Grundlagen der Mathematik 9:67–97.

McCarthy, J., and Hayes, P. 1969. Some
Philosophical Problems from the Stand-
point of Artificial Intelligence. In Machine
Intelligence 4, eds. B. Meltzer and D.
Michie, 463–502. Edinburgh, U.K.: Edin-
burgh University Press.

Moore, R. C. 1980. Reasoning about
Knowledge and Action. Technical Report
191, SRI AI Center, Menlo Park, Calif.

Pylyshyn, Z. 1987. The Robot’s Dilemma:
The Frame Problem and Other Problems of
Holism in Artificial Intelligence. Greenwich,
Conn.: Ablex.

Reiter, R. 1991. The Frame Problem in the
Situation Calculus: A Simple Solution
(Sometimes) and a Completeness Result
for Goal Regression. In Artificial Intelli-
gence and Mathematical Theory of Computa-
tion: Papers in Honor of John McCarthy, ed.
V. Lifschitz, 359–380. San Diego, Calif.:
Academic.

Schubert, L. K. 1990. Monotonic Solution
of the Frame Problem in the Situation Cal-
culus: An Efficient Method for Worlds with
Fully Specified Actions. In Knowledge Repre-
sentation and Defeasible Reasoning, eds. H. E.
Kyburg, R. P. Loui, and G. N. Carlson,
86–95. New York: Kluwer Academic.

Drew McDermott is a
professor of computer
science at Yale University.
He was educated at the
Massachusetts Institute
of Technology, where he
received a Ph.D. in 1976.
He was chair of the Yale

Computer Science Department from 1991
to 1996. He is coauthor of two texbooks
in AI, serves on the editorial board of Arti-
ficial Intelligence, and is a fellow of the
American Association for Artificial Intelli-
gence. McDermott’s research is in robot
navigation, planning, and interagent
communications.

SUMMER 2003 103

Book Reviews

104 AI MAGAZINE

Smart Machines in
Education
Edited by Kenneth D. Forbus
and Paul J. Feltovich

Dynamics of
Organizations
Edited by Alessandro Lomi
and Erik R. Larsen

Biorobotics
Edited by Barbara Webb
and Thomas R. Consi

Safe and Sound
By John Fox
and Subrata Das

Advances in
Distributed
and Parallel
Knowledge Discovery

Edited by Hillol Kargupta and Philip Chan

Software Agents
Edited by Jeffrey M. Bradshaw

Advances in
Knowledge Discovery
and Data Mining
Edited by Usama M. Fayyad, Gregory
Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy

Natural Language
Processing and
Knowledge
Representation
Edited by Ĺucja M. Iwańska and
Stuart C. Shapiro

Case-Based
Reasoning
Edited by David B. Leake

AAAI Press
445 Burgess Drive

Menlo Park, CA 94025
www.aaaipress.com

Classic … Groundbreaking …

