Intelligent Control of a
Water-Recovery System
Three Years in the Trenches

Pete Bonasso, David Kortenkamp, and Carroll Thronesbery

B This article discusses our experience building and
running an intelligent control system during a
three-year period for a National Aeronautics and
Space Administration advanced life support (ALS)
system. The system under test was known as the
Integrated Water-Recovery System (IWRS). We
used the 3t intelligent control architecture to pro-
duce software that operated autonomously, 24
hours a day, 7 days a week, for 16 months. The ar-
ticle details our development approach, the suc-
cesses and failures of the system, and our lessons
learned. We conclude with a summary of spin-off
benefits to the Al community and areas of Al re-
search that can be useful for future ALS systems.

“We'll have to go with 4 two-head pumps for
the nitrifier.”

The AI controls engineer frowned at the
speaker, a young mechanical engineer in
charge of the physical design of a state-of-the-
art biological water processor (BWP). “That
pump doesn’t give me any feedback for speed,
so we can'’t be sure it’s responding to com-
mands.”

“It’ll have to do,” said a woman at the far
end of the conference table. As the manager for
the Integrated Water-Recovery System (IWRS),
she made the final calls. “The eight-head pump
won't function at the required pressures, and
the four heads are just too expensive. Can't
you use the tube pressures to know if the
pumps are working?”

The controls engineer shrugged, spreading
his hands. “Sure, but with the single transducer
to monitor eight tubes, we won’t know for
three to five minutes after the pump command
is sent.”

“Can we live with that?” asked the manager,
glancing around the table at each member of
the assembled group of microbiologists and
chemical engineers.

One of the engineers tapped at his personal
digital assistant, then spoke up, “Even at 32
mils a minute, the pressure buildup from the
recirculation pump won'’t be enough to trigger
the relief valve. I think it’s in the noise.”

“Okay,” said the manager. “We go with the
two heads.”

The time frame was the winter of 1999, and
this exchange was typical of many conversa-
tions that the AI controls team from the Au-
tomation, Robotics, and Simulation Division
(AR&SD) at Johnson Space Center (JSC) would
have with the advanced water-recovery per-
sonnel as the two groups prepared for a year-
long test of a new Integrated Water-Recovery
System (iWRS), slated to begin in January
2001. We were building an Al control system
for this test that had to handle upward of 200
sensors and actuators grouped among 4 water
processing subsystems. The control system
would run 24 hours a day, 7 days a week, and
be completely autonomous. It was an applied
Al engineer’s dream, and in the end, we were
extremely successful. However, there were
events that happened for which we were ill
prepared, and we would come away with a
much better appreciation for the difficulties in-
volved in controlling long-duration life-sup-
port systems.

This article is the story of our experiences
developing and running the iWRS Al control
system.

The Farly Years

By 1995, the AI controls team had been work-
ing with several groups in the Crew and Ther-
mal Systems Division (CTSD), building Al con-
trol systems in support of CTSD’s inves-
tigations in advanced life support (ALS). In
1995, they put a man in an airlock linked to a
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Figure 1. The Product Gas Transfer Environment.

10-foot-diameter chamber full of wheat (Lai-
fook and Ambrose 1997). For 15 days, the man
lived, worked, and exercised in the chamber as
the wheat crop took in his carbon dioxide and
produced oxygen for him. The control sys-
tem—our first for ALS—monitored and provid-
ed caution and warnings for the climate and
nutrient environment of the wheat crop.

In 1997, they put 2 men and 2 women in a
30-foot chamber for 91 days (Schreckenghost
et al. 1998b). A physical-chemical air revitaliza-
tion system recycled the air for 3 of the 4 peo-
ple, and a wheat crop in the 10-foot chamber
did the same for the fourth. The ALS team also
experimented with a solid-waste incinerator.

Our second ALS AI control system managed
the transfer of O2 and CO2 among the gas
reservoirs for this test to ensure crew and crop
health and to recycle gases produced by waste
incineration. These reservoirs included a crew
habitat, a plant chamber, an airlock, and a
number of pressurized tanks (figure 1). Operat-
ing 24 hours a day, 7 days a week, the Al sys-
tem also used a generative planner that sched-
uled waste incinerations and crop planting and
harvesting, coordinating these tasks with the
day-to-day product gas transfer.

For both these projects, we used a three-layer
architecture (Gat 1998) to design, organize,
and develop the control software. AR&SD had
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Figure A. The 31 AI Control Architecture.

The ALS control system uses the intel-
ligent control software for au-
tonomous systems known as 3T
(Bonasso et al. 1997), which separates
the general robot intelligence problem
into three interacting tiers: (1) the
planner, (2) the sequencer, and (3) the
skill manager (figure A):

A set of robot-specific, situated skills
(or behaviors) represent the architec-
ture’s connection with the world
through the sensors and actuators.
The term situated skills is intended to
denote a capability that, if placed in

the situated skills
to direct changes
in the state of the world and accom-
plish specific tasks. The 3t architecture
uses the reactive action packages (RAPS)
system (Firby 1999) for this portion of
the architecture. The rAPs engine is an
interpreter, indexing RAPs (essentially
sets of linear plans) from a library
based on the changing world situa-
tion. Thus, one can change a RAP or
add new RAPs while the sequencer is
executing.

A deliberative planning capability
reasons in depth about goals, re-
sources, and timing constraints. The

31 hierarchical task net planner
known as Ap (Elsaesser and Sanborn
1990) uses the highest-level RAPs as its
primitive plan operators and can re-
plan both spatially and temporally.
The planner is efficient, but it becomes
even more potent when its level of de-
tail is abstracted to the RAPs of the se-
quencing layer below it. It is impor-
tant to note that once the planner
generates a plan, it executes the plan
by placing primitive plan actions on
the sequencer’s agenda and monitor-
ing the results of the sequencer’s ac-
tions.

Communication among the layers
and between skill managers uses the
interprocess communication (IPC)
message-passing protocol (Simmons
and Dale 1997). With this communi-
cations infrastructure, data from any
part of the system can be monitored
by any other part of the system.

A key aspect of 3t is that it gives de-
velopers the ability to integrate the
continuous, near-real-time control al-
gorithms in the bottom layer with ad-
vanced Al algorithms in the top lay-
er—that is, automated planners and
schedulers—that are event driven but
more computationally expensive. The
31 architecture provides this integra-
tion through the middle or sequenc-
ing layer. Essentially, the middle layer
translates the goal states computed by
a planning and scheduling system in-
to a sequence of continuous activities
carried out by the skills layer and in-
terprets sensor information from the
skills layer as events of interest to the
upper layers.

The 3T applications run autono-
mously, in large part because of the
principle of cognizant failure (Gat
1998) embodied in each level of the
architecture. The skills level notifies
the sequencer when it loses any of the
states it must achieve; the sequencer
uses alternative sequences when the
primary methods fail, ultimately
putting the control system in a safe
state; and the planner can synthesize
alternative plans in light of the failures
of the lower two tiers.
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Ammonium 800 mg/L 300 mg/L 75 mg/L <0.5 (n/a)ymg/L
Total Carbons 600 mg/L 20 mg/L 3 mg/L <0.5 (1.5) mg/L
Inorganics 10 mS 10 mS 0.3 mS <0.01 (0.15)mS
pH 9 8 8 7
HCO3 0 mg/L 500 mg/L 50 mg/L 3 mg/L (n/a)

Figure B. The Water-Flow Paths and the Target Quality Values in Milligrams and Millisemens
(an Indirect Measure of Water Quality) for Each Liter for the Integrated Water-Recovery System.

The numbers in parentheses for the postprocessing system effluent are those for typical residential tap water.

Advanced
Water-Recovery System

The advanced Water-Recovery System (WRS) is a set of next-generation wrs components that promise to
provide potable water using fewer consumables (filters, resins, and so on) and much less power than the
components currently planned for use on the International Space Station (ISS) (figure B). Figures 2 and
3 show the four subsystems used in the IWRS test. The IWRS comprises (1) a biological water processor
(BWP) to remove organic compounds and ammonia, (2) a reverse-osmosis subsystem to remove inor-
ganic compounds from the effluent of the biological water processor, (3) an air evaporation system (AES)
to recover additional water from the brine produced by reverse osmosis, and (4) a postprocessing system
(PPS) to bring the water within potable limits.

The wrs planned for use on the ISS is a physical-chemical system that requires a yearly resupply of
roughly 3000 pounds of consumables (filters, membranes, and so on). In contrast, the advanced wrs de-
veloped and tested at JSC is projected to require only 250 pounds of consumables a year and use S0 per-

cent less power.
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Figure 2. The Advanced Water-Recovery System Subsystems.

Upper left is the biological water processor. At right is the rack containing the reverse-osmosis subsystem in
the rack bottom, the air evaporation subsystem (AES) at the top of the rack, and the postprocessing system
in the rack’s left rear. The lower left picture is a close up of the wick in the AES.

used a particular implementation of this archi-
tecture known as 37 (see sidebar 1) in a number
of robot projects prior to 1995 (Bonasso et al.
1997), and because life support systems are a
form of immobots (Williams and Nayak 1996),
its application to ALS projects was straightfor-
ward.

In each of the previous efforts, the 31 team
from AR&SD was required to interface the Al
architecture to existing legacy software and
hardware systems (Schreckenghost et al.
1998a). In 1999, however, we began to support
advanced water-recovery projects that were be-
ing built from the ground up. As a charter
member of the water research group in CTSD,
the AR&SD Al team was influential in the selec-
tion of hardware components and the design
of the overall control of these systems. For the
first time, we were able to build the full 3T sys-
tem from the A/D converter boards used by the
sensors and devices to the top tier of the archi-
tecture.

In the summer of 1999, we had used the bot-
tom two layers of 31 to provide autonomous
control for a single subsystem—a second-gen-

eration biological water processor—during a
450-day, 24-hour-a-day, 7-day-a week test.
Then in January 2000, the Advanced Water Re-
search Group received ALS funding for the
year-long IWRS test, involving four advanced
water-recovery subsystems (Bonasso 2001) (see
Advanced Water Recovery System sidebar).

Buildup

Using 3t allowed us to develop the control for
the IWRS in a modular fashion in two ways.
First, moving from bottom to top (figure 4),
each layer has its own data structures, timing
constraints, and development tools that allow
for parallel development of the software. Thus,
we were able to develop skills sets based on the
evolving hardware specifications and simulta-
neously develop the sequencer procedures. Ear-
ly on, as the water research team developed the
design for each subsystem, one part of the 3t
team wrote the sequencer procedures for each
subsystem in the rars language (which, in turn,
is written in Lisp)! using virtual skills, that is,
Lisp skills connected to a Lisp simulation of the
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Figure 3. The Integrated Water-Recovery System Waste-Water Collection System.

Human volunteers donate urine, showers, and hand washes, using liquid soap with the chemical com-
position of that to be used on the space station. A computer system responds to the push buttons at each
donation site to weigh and record each type of donation before sending the donation to the main feed
tank for the INTEGRATED WATER-RECOVERY SYSTEM. Prepared solutions representing respiration water are
added to the feed tank to complete a composition representative of that expected on the space station

or planetary outposts.

expected hardware. A virtual simulation of,
say, the reverse-osmosis subsystem could then
be shown on a laptop to the wrs engineers and
the control design refined in an iterative
process even before the actual hardware was
available. The primary result of this process
was a set of skill specifications for each subsys-
tem (figure 5).

As the hardware specifications became more
firm (figure 6), another part of the 31 team
wrote the skills for the subsystems in ¢ on a
VXWORKs rack in the AR&SD laboratories, us-
ing the skill specifications and testing them
with rudimentary ¢ simulations of the expect-
ed hardware. When the hardware for a given
subsystem came online, the skills for this sub-
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Figure 4. The 3T Implementation for the IWRS Test.

We developed one skill manager for each subsystem, which ran on its own CPU. Skill managers broadcasted
data at specified intervals for use by extant clients for analysis and review. The sequencer level managed task
control, and the top-level control was provided for the most part by the engineers running the test.

system were installed in the test rack in the wa-
ter research laboratory. After testing the in-
dividual data channels, the skills developers
used a skill-level command graphic user inter-
face (GUI) to activate and deactivate individual
skills. This development approach enabled the
31 team to deliver the low-level control for
each subsystem within two weeks of the sub-
system hardware installation.

Next, the sequencer procedures for the sub-
system (raps) were installed on the AI worksta-
tion and tested with the validated skills. An ex-
ample of the resulting RAPs is shown in figure
7. There are several methods associated with

the processing-start RAP, each indexed by a
context clause. The method shown is valid
when the required reverse-osmosis stage is
purged, and the pps-select valve is open to the
postprocessing systems (PPSs). In this case, the
RAP starts the reverse-osmosis main feed
pump, stops the recirculation pump, and turns
the pps-select valve to reject (relieving down-
stream pressure). Then, the RAP turns the re-
verse-0smosis process valve to the purge posi-
tion and turns the pps-select valve to the tank
position.

The skills level remained relatively stable
once the sensors and actuators were in place.

Articles

SPRING 2003 25



Articles

Skills -- for the RO agent

Name RO

Type device

Params interval

Outs none

Function: A device skill that gets all the sensor values and provides them to

the other skills. Also sends commands to the pumps and valves. Also every
interval seconds, this skill broadcasts a data message with the values of all
the channels listed above to the IPC server so that clients (e.g., a logging
facility) can access them (see the IPC structure at the end of this document) .

Name valve position
Type query
Params valve (process/pps_select)
Outs value (for process:primary/secondary/purge/off/unknown;
for pps_select:pps/tank/reject/off/unknown), and result (okay or Err)
Function: Checks V02 or V03. One of lines V02 il through V02 i3 or V03 il

through v03 i3 will be hi, and the rest will be low. the result

is off. Any other pattern is unknown.

If all are low,

Name valve at

Type event

Params valve (process/pps_select), value (for
process:primary/secondary/purge/off; for
pps_select:pps/tank/reject/off)

Outs result (okay/ERR)

Function: Waits for V02_il through V02 i3 or V03_il through V03 i3 to indicate
value (see the valve position skill). When the condition is achieved the event
returns result.

Name turn valve

Type block

Params valve (process/pps_select), value (for
process:primary/secondary/purge/off;
for pps select:pps/tank/reject/off)

Outs none

Function: Sets one of V02 ol through V02 03 to hi the rest to low, except for

off when all lines will be set lo.

Figure 5. Excerpts from the Reverse-Osmosis Skill Specification.
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We repeated the process for each subsystem
and then developed and tested additional se-
quences to integrate the subsystems. The total
initial software development took on the order
of four and a half months, using roughly one
month for each subsystem and two weeks for
integration testing.

The second manner in which the modulari-
ty of the 31 system sped our development is
that the architecture allows the independent
development and testing of groups of ALS sub-

systems and a subsequent incremental integra-
tion of these subsystems (figure 8). This aspect
of the control development became important
for the wrs team in dealing with the startup
time of the BWP. The microbes in the BWP take
one to two months to form viable colonies to
process feed water. This inoculation period
meant that bringing the other subsystems into
test would be delayed by at least one to two
months, and even longer if the inoculations
became problematic.
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Figure 6. 31 Control Computers for the INTEGRATED WATER-RECOVERY SYSTEM.

On the left is a view of the 31 VERSAModuleEurocard (VME) rack behind the computer that is used as a secondary interface to the
reverse-osmosis high-pressure pump. On the right is a view of the (unattended) 3T control table. From foreground to back, the dis-
plays are two sequencer-planner displays, the IPC-skill manager display, the display of the broadcast server, and a display associated
with the high-pressure pump used in the reverse-osmosis subsystem. In the upper right is the display showing the graphic user in-
terfaces (GUIs) for each subsystem generated by the data broadcast from each skill manager.

To give the water team more breathing room,
the 31 group suggested that the water team di-
vide the official start of the test into two com-
ponents: (1) the BWP and the reverse osmosis
and (2) the reverse osmosis and the other two
subsystems (AES and PPS). In the iWRS system,
the pivotal subsystem is the reverse osmosis.
This system receives BWP effluent, processes it,
and provides product water for the two down-
stream systems. In effect, the BWP is indepen-
dent of the downstream systems, so it could
conceivably be started early when the down-
stream systems were still being built. Because of
the modularity of 31, the initial iWRS could

consist of the first two subsystems, with the
output going to drain while the inoculation
proceeded, and the second iWRS could include
all four subsystems. In this manner, the water
team started the test with only the first two sub-
systems in April 2000 and brought the other
two systems online in December 2000 in time
to make a January 2001 full start.

Controlling the Integrated
Water-Recovery System

In this section, we describe the control tasks for
the final IWRS system that went into test in
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(event-definition (:valve at (:valve

(= ?value ?open-closed)))

(timeout ?timeout)
(method

(primitive

(enable (:turn valve (:valve ?valve)

:succeed (?result))

(disable :above)

))
)

(method purge
(context (and (= ?stage purge)

(
(
(= ?o0ld-pos pps)
(

(task-net
(sequence

(:value
(wait-for (valve-at ?agent ?valve ?open-closed ?result)

(define-primitive-event (valve-at ?agent ?valve ?open-closed ?error)
?valve)
(event-values :bound :bound :bound :unbound))

(:value ?open-closed) ) )

(define-rap (turn-valve-p ?agent ?valve ?open-closed ?timeout)

(succeed (and (valve-position ?agent ?valve ?value ?error)

?open-closed))

(define-rap (processing-start ?stage ?adjust-time)

valve-position roskm pps select ?old-pos ?error)

nominal-pump-speed roskm feed ?wwsp)
(default-timeout ?dto)))

(tl (syringe-pump-p roskm start feed ?wwsp 30))

( (water-flowing-p roskm stop recirc 0 ?dto))
(3 (turn-valve-p roskm pps_select reject ?dto))
( (turn-valve-p roskm process purge ?dto))

( (turn-valve-p roskm pps select tank ?dto)))))

Figure 7. A Primitive Event, a Primitive Reaction Action Package (RAP), and a
High-Level RAP That Use the Skills from the Skill Specification Shown in Figure 5.

The event definition and the primitive enable clause invoke the c-code skills, whose name and arguments are delineated by colons.

The primitive RAP succeeds when the valve position matches the commanded value.

2001, first by subsystem and then for the IWRS
as a whole (figure 8).

The Biological Water Processor

Feed water from the waste-water collection
system (figure 3) first passes through the BWP.
The main control task for the BWP is to keep
the water in the gas-liquid-separator (GLS) (see
the lozenge icon with the three-level switches
in the upper left of figure 8) at mid-level,
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which is accomplished by varying the speed of
the feed pump, and the draw from the reverse-
osmosis main pump remains constant. The
other requirement is to monitor the pressures
in the recycle loop, as well as in the nitrifier
tubes, and carry out automatic shutdown pro-
cedures in the case of off-nominal values. For
example, if one of the nitrifier tubes shows too
high a pressure, the water and air pumps asso-
ciated with this tube are shut down, and a
warning is issued.
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Figure 8. A Schematic Display of the INTEGRATED WATER-RECOVERY SYSTEM as Seen by 3T.

The biological water processor is in the upper left, the reverse-osmosis subsystem in the upper right, the air
evaporation system in the lower right, and the postprocessing system in the lower left. Gray lines indicate flow
pipes; black lines indicate pipes with water or air currently flowing. Small boxes with lines at junctures indicate

motorized valves.

The Reverse-Osmosis Subsystem

The reverse osmosis (upper right portion of
figure 8) is the lynchpin subsystem because it
pulls water from the GLS of the BWP and de-
livers its output water, called permeate, to the
PPS and brine to the AES. It removes inorganic
compounds by pushing the input water at
high pressure through tubular membranes
that act like molecular sieves. The reverse-os-
mosis subsystem must go through as many as
four distinct phases in each cycle. The prima-
ry phase draws water into a coiled section of
pipe that acts like a reservoir while it processes
permeate in the outer loop of pipes. In the
secondary phase, the rejected water is concen-
trated into brine in the inner loop of pipes.
The usual third phase is to purge the brine to
the AES. However, periodically the membrane
needs to be cleaned of particulates that collect
on its surface by running the water counter-
clockwise in the inner loop during what is
known as the slough phase.

Additionally, there are a number of ASDs as-
sociated with back pressure on the membranes,

permeate conductivity, and loss of pressure in
the recirculation loops.

The Air Evaporation System

The AES wick absorbs reverse-osmosis brine as
it fills the AES reservoir (lower right of figure 8)
during the reverse-osmosis purge cycle. During
operation, hot air blows across the wick, taking
up evaporated water and leaving solid waste on
the wick. The moisture-laden air then passes
through a heat exchanger where water is con-
densed into an output tank. The AES processes
the brine in batches. When the brine fills the
reservoir to the second-level switch, the AES
starts up, processing the brine until the lowest
switch reads dry, at which point the AES goes
into standby, awaiting another load. ASDs con-
cern overheating and loss of coolant fluid in
the heat exchanger.

Additionally, the AES pumps condensate to
the PPSs when the condensate tank reaches a
certain level or when the reverse-osmosis sub-
system is not sending its condensate to the PPS
(to keep a steady flow of water to the PPS).
When the wick is spent, as indicated by the
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conductivity of the condensate, the AES engi-
neers initiate a dry-out procedure prior to re-
placing it. A typical wick lasts 45 days.

The Postprocessing System (PPS)

The PPS (lower left of figure 10) “polishes” the
water from the reverse-osmosis subsystem and
the AES by removing trace inorganic material
by way of ion-exchange beds and trace organ-
ics by oxidizing them with ultraviolet (UV) ra-
diation. The PPS controls monitor the input
water pressure. When the pressure goes above
a threshold indicating water flow from either
the AES or the reverse osmosis, the O2 concen-
trator is started, and a number of UV lamps are
turned on commensurate with the measured
total organic carbons (TOCs). When the pres-
sure falls below the threshold, the concentra-
tor and lamps are turned off. An average TOC
is calculated based on the instantaneous TOC
and the water accumulated in the product
tank to determine whether the PPS output
should be rejected to the BWP feed tank. ASDs
concern overheating of the lamps and high
output conductivity, indicating that the resin
in the ion-exchange beds has been used up.

Integrated Control

The modularity of the hardware systems is
such that these subsystems are considered four
loosely coupled agents, which mainly react to
their input and water quality and only rarely
respond to the operation of the other subsys-
tems. One such response is when the AES
pumps condensate to the PPS in the reverse os-
mosis’s stead, as previously discussed. Another
response is when the reverse osmosis monitors
the level of the GLS in the BWP to ensure that
there are sufficient resources for it to draw on.

Additionally, PPS pressure changes are cor-
roborated by sensing the state of the pumps
and the valve configurations of the reverse os-
mosis and the AES. For example, if the inlet
pressure is not high enough to indicate water
flow, but the AES or reverse-osmosis pump
speeds and valve configurations indicate water
is flowing, then the PPS will begin operations.

Finally, when there is a complete ion ex-
change bed breakthrough in the PPS, the re-
verse osmosis and the AES sense the high PPS
conductivity and recycle their effluent to the
BWP feed tank.

The Test

The 1WRS test consisted of a series of test
points, each representing a different configu-
ration, and each slated to last until the IWRS
product water could no longer be maintained

at the required potable standard (see the tar-
get quality values in the Advanced Water-Re-
covery System sidebar). This nonpotable end
point occurred when the quality of the water
from the last of the three ion-exchange beds
rose above a predefined level of TOC concen-
tration. The test configurations were 2-per-
son, 24-hour operation; 2-person, 24-hour op-
eration with condensate rejected to the feed
tank to reduce the loading on the ion-ex-
change beds; 4-person, 24-hour operation
with condensate reject; 2-person, 18-hour op-
eration (allowing 6 hours for maintenance);
and 2-person, 18-hour operation with con-
densate reject.

Each test point called for either different
flow rates or full or partial reject of internal
flows or both. Besides rejecting AES conden-
sate, 4-person or 18-hour operations required
the reverse-osmosis subsystem and BWP to
process water at an increased rate, with some of
the reverse-osmosis permeate being returned to
the BWP feed tank during the highest-conduc-
tivity periods in the cycle.

The test team began the first test point in
January 2001. Soon they found that the ion-ex-
change beds were performing so well that in-
stead of 30 to 40 days, a test point might take
3 months. To reduce the length of the overall
test to a manageable level, the water team re-
sized the ion-exchange beds to one-third of
their original size and then restarted the test
beginning with the first test point in March
2001.

On 25 December, the third ion-exchange
bed “broke through” for the last test point,
marking the end of the test proper. From Janu-
ary through mid-April 2002, the team main-
tained the IWRS running in the first test-point
configuration to support an unrelated anti-
biotic study by Texas Technical University.

Software Engineering Lessons

A fundamental purpose of an article such as
this one is the recounting of lessons learned
from the experience. Some of these lessons fall
into the category of software engineering of
slow-running, long-duration systems. The 3T
system was designed for the intelligent control
of autonomous robots, fast-running robots that
never had to function for longer than a few
hours at a time. Although we have been suc-
cessful in using 31 to control ALS systems that
have much longer response times and operate
continuously, our experience in applying this
architecture to these systems and to the wrs in
particular has given us insights into key charac-
teristics of long-duration systems and the im-



plications of these characteristics for intelligent
control of similar systems in the future.

Advantages of Reaction
Action Packages and Lisp

That raps uses a plan interpreter and that the
top two layers of 31 are written in Lisp allowed
us to make changes in subsystem operation on
the fly. In addition to changing set points and
warning levels interactively, RAPs could be
modified while the subsystems were in opera-
tion. RAPs are stored in a plan library, and in-
stances are created and put on the task agenda
as other tasks are removed. Thus, we could
store modified RAPs in the library, which
would then be picked up the next time the
RAPs processing called for them.

Often, new RAPs were required that were
unanticipated at the beginning of the test, or
existing RAPs had to be modified as we learned
more about the actual online system perfor-
mance. New or modified RAPs were tested with
virtual skills in the AR&SD laboratories and
then installed in the running system in the wa-
ter laboratory.

An example of a new RAP is the TOC calcu-
lation RAP described in the Advantages of Dis-
tributed, Layered Control section later. An ex-
ample of modifying a RAP concerned the
operation of the AES condensate pump. To
maintain constant operation of the PPS for as
long as possible, the AES condensate was
pumped to the PPS whenever the reverse-os-
mosis subsystem was not sending its effluent to
the PPS, for example, when the reverse-osmosis
system is in purge mode. Over the course of the
test, this simple control scheme was expanded
to include sending condensate to the PPS
whenever the tank was full to prevent over-
flow, inhibiting condensate flow whenever the
PPS output conductivity was too high and
modifying the full condensate pumping
scheme whenever the test point called for re-
jecting the AES output to the feed tank.

Of course the incremental nature of the Lisp
compiler allowed us to change other code
without stopping operations. A representative
example of this kind of on-the-fly code chang-
ing involved the central wrs data display. Fre-
quently, in the early months of the test, the
test engineers would desire additional informa-
tion to be shown on the main wrs monitor. Ex-
amples of additional data output not called for
in the original design include the reverse-os-
mosis stage elapsed time (upper right of figure
8) and the allowed and average TOC (lower left
of figure 8). Because the entire interface was
written in Lisp (we used Macintosh Common
Lisp [Digitool 1996] running on a Power Mac

G4), a control engineer could build, debug, and
install such changes to the displays online
without disturbing the main control code.

After the first month, the control code was
placed under configuration control, so the
types of changes described earlier were always
discussed with the water team in a weekly tag-
up meeting before being implemented. None-
theless, once the changes were approved, the
water team appreciated the rapidity with
which they were implemented.

Managing Systems with
Long Response Times

A key aspect of ALS systems is the slow event
times associated with them. In our wrs system,
turning a valve took 3 or 4 seconds, the PPS
oxygen concentrator took a minute and a half
to come up to speed and several minutes to
turn off, and the AES heaters took 5 minutes to
heat the air circulating in the AES and then up-
wards of 10 minutes to cool down. The key
control insight here is that the final responses
were more important than the initiating
events. Thus, instead of building procedures as
sequences of enable and wait-for clauses (as
was normally the case with our robot systems),
we wrote procedures as a sequence of activa-
tion steps followed by the initiation of a series
of separate monitoring procedures that waited
for the final responses and took appropriate ac-
tion if they failed. When one of these long-
term events—for example, waiting for the oxy-
gen concentrator to become operational—
failed, it was often because over the length of
the test, the device was just taking several sec-
onds longer to activate. With our coding ap-
proach, however, we only needed to adjust the
time-out parameters in the monitoring proce-
dures (online in real time—see Advantages of
Reaction Action Packages and Lisp).

Related to the long activation response times
is the fact that the wrs system-level events oc-
curred on the order of hours or days. To find
out if a system-level change was having the de-
sired effect, we often waited for days or weeks.
An example of dealing with long activation re-
sponse times had to do with determining the
optimum number of reverse-osmosis cycles be-
fore having the controls perform a membrane
slough. A reverse-osmosis cycle typically com-
pleted every four and half hours. At the begin-
ning of the test, the system was directed to
slough the membranes every 8 cycles, or every
36 hours of processing. As the test continued,
the quality of the reverse-osmosis permeate
tended to be worse toward the end of the last
two cycles, suggesting that a slough was re-
quired more often. It took the team over a
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week and a half of experimenting to determine
that the number of cycles to slough should be
set to four to keep the permeate quality consis-
tently high. Additionally, a new cycles-to-
slough value had to be determined as often as
every month, either because a new membrane
was used or because the amounts of its perme-
ate, being recycled back to the feed tank varied
with different test points.

To help engineers manage these types of
problems, we needed to “catch” and log key
events whose duration was one or two orders
of magnitude smaller than the rest of the sys-
tem events. For example, in determining the
optimal number of cycles between sloughs, the
reverse-osmosis engineer needed to correlate
the permeate water quality with a count of
how many sloughs had taken place. A slough
took no more than 4 minutes to execute, but
although the skills broadcast the data every 15
seconds, the logging rate for data used for
analysis was every 5 minutes (of the wrs system
events, only the reverse-osmosis slough event
took less than 5 minutes to occur). Thus, the
slough indicator—the reverse-osmosis recircu-
lation pump running in reverse at one third
the normal revolutions per minute (rpm)—was
often missing from the logs; so, we built an
event detector into the reverse-osmosis GUI
that detected the slough indicator using the
15-second data and cached it as a yes or no flag
in the S-minute log.

Simple Systems Become
Complex When Integrated

With the possible exception of the BWP, we
have found that individual ALS subsystems are
relatively straightforward to control. They nor-
mally require a startup procedure, several actu-
ator check monitors (such as one to ensure that
the reverse-osmosis recirculation pump doesn’t
start before the feed pump), an ASD monitor,
and a shutdown and/or standby procedure.
When several subsystems are integrated, how-
ever, the complexity increases, and the need
for look-ahead reasoning, such as the crop ro-
tation scheduler for the 91-day human test dis-
cussed earlier, becomes evident.

Without a sufficient domain theory for wrs,
we could not bring generative planning tech-
niques to bear, but our loosely coupled agent
approach allowed us to isolate the increased
complexity to the interagent interfaces. This
isolation gave rise to more complex code to
handle the larger number of contexts (system
states) that arose from the interfaces. For ex-
ample, the procedure that managed the level
in the AES condensate pump discussed earlier
required only two methods (the number of

methods roughly equates to the number of sys-
tem states of concern for the procedure). How-
ever, integrating the AES with the rest of the
WRS required an additional five methods and a
rewrite of the original two.

We were successful in this endeavor because
the RAPs system forces a modular coding ap-
proach (multiple contextual methods to a-
chieve a goal) and because Lisp allowed us to
both bring the new methods online and to test
the old ones while the control system was op-
erating.

Long-Duration Systems
Have Their Own Problems

By their very nature, ALS systems are long run-
ning, carrying out their prescribed processing
for weeks or months. When anomalies occur,
they are rare but must be detected and
processed to prevent often catastrophic results.
In developing and maintaining the IWRS 3T
system, we have come to understand several
control implications of this long-duration
characteristic of ALS systems.

Equipment Degradation During the 12
months of IWRS operation, we witnessed the
slow degradation of pressure transducers, flow
meters, a dew-point sensor, the AES blower,
and the main reverse-osmosis feed pump.
These were not failures as such but a slow dete-
rioration of performance to the point that the
equipment could not perform its function.
Sometimes the ultimate failure brings the test
to a halt, such as in the case of the reverse-os-
mosis feed pump. With the other equipment,
the degradation is gradual and difficult to de-
tect because the symptoms are often intermit-
tent. The point is that often the degradation
takes place over several months, and neither
the water team nor the controls engineers had
the experience to determine if the various
problems stemmed from software or hardware.
We had few utilities in place to help capture
the intermittent events and spent much time
in each instance adding trace code and study-
ing the results. After about six months, we be-
came familiar with the character of each of the
subsystems and were able to more easily ascer-
tain the cause of these types of anomaly. In the
future, use of specialized event-detection algo-
rithms will be required (see Spin-Off Benefits
for the Al Community).

Autonomy versus Hardware Besides the
deterioration of wrs hardware, we had to re-
place all but one computer used in the control
system as well as the power supply in one of
the VME racks. Disk failure and memory prob-
lems were easy to detect and repair, but the
power-supply problem taught us a fundamen-



tal rule about user acceptance of automation in
long-duration systems: The automation must
last longer than the hardware. What we mean
here is best described by the situation sur-
rounding the loss of the power supply.

The microbes in the BWP could not go
longer than five or six hours without being
“fed,” that is, having feed water circulating
around the colonies. The power supply to the
rack controlling the BWP began to fail during
the BWP-reverse-osmosis phase of testing in
the spring of 2000. Early on, the only indica-
tion of a problem was that the rack CPUs
would reset, zeroing the pump speeds, thus
halting feed water to the BWP. When this reset
happened after the last human check at 11 prym,
the water laboratory personnel would arrive
the next morning to find the colonies de-
stroyed. The first failure required a two-week
reinoculation of the BWP; as a result, the wRrs
manager assigned humans to monitor the con-
trol system around the clock. It was not clear
why the CPUs had reset, and once the software
was restarted the system ran for days before an-
other reset occurred.

After experiencing more frequent resets over
a weekend, the water team decided to take
both subsystems “off controls” and run them
manually; that is, all actuators were run open
loop. The team decided that the chance of a
BWP or reverse-osmosis hardware failure was
far less likely than a catastrophic control fail-
ure. Even after the control team replaced the
power supply—which is still operational as of
this writing—the water team did not put the
subsystems back “on controls” for two weeks
and did not cancel the around-the-clock per-
sonnel shifts until the control system “caught”
a hardware failure—a failed BWP nitrifier
pump—two weeks later.

Memory Leaks Most software developers
delivering an application will write their code
carefully enough to make efficient use of
memory resources. However, there can be in-
efficiencies in the resulting code that will not
appear with the normal amount of debug
testing. Such inefficiencies have a cumulative
effect and make themselves felt only after
weeks of operation. We discovered over the
course of the first several months of opera-
tion that all the software we developed and
installed in the water laboratory “leaked”
memory; that is, the code was using small
amounts of memory resources daily without
releasing these resources. Memory leaks were
discovered in the skill managers, the IPC
clients, and the sequencer. The lesson here is
that wherever possible, the code should be
run for several days (as opposed to several

hours as is usually the case with robot sys-
tems) with memory metering before delivery.

Safety Shutdowns No matter the number
of precautions taken to prevent system failure,
there was always a set of variables outside our
control. Some of these can be corrected by
smart shutdown schemes; we discuss an exam-
ple in this subsection. Others cannot be pre-
vented, but check-pointing states can speed up
the recovery process; we discuss an example of
this type of problem in the next subsection.

Every six weeks or so, over the course of a 12-
month test, we experienced random faulty da-
ta packets. These would produce a data set that
would cause the sequencer to break and thus
stop reading IPC messages. This event in-
evitably occurred after the last check by the
control engineers (typically about 11 rm) and
before the laboratory personnel arrived in the
water lab six hours later. With the sequencer
down, messages sent to the sequencer would
build up in the IPC server, and after about an
hour, the server would crash, bringing down all
clients connected to it, including the logging
GUTIs and the skill managers.

When the skill managers died, they left the
last settings for the pumps and valves on the
A/D boards. In one instance, the failure oc-
curred while the condensate pump was on; in
another, the failure occurred when the BWP
controls were in the middle of adjusting the
GLS level, and the feed pump was running low-
er than usual. In the former case, the conden-
sate pump pumped the tank dry and started
pushing air into the ion-exchange beds of the
PPS, requiring a shutdown and a manual
repacking of the beds. In the latter case, the
GLS was pumped dry by the reverse-osmosis
action, and the reverse osmosis drew air from
the BWP GLS at high pressure into its mem-
branes, rendering them useless.

Our solution to these network failures was to
make the skill managers aware of the loss of
communications with the sequencer and exe-
cute procedures for putting their respective
subsystem in a safe state. We developed the
idea of a watchdog timer in each skill manager.
If the elapsed time since the last sequencer
communication was greater than a predeter-
mined time (we used five minutes), the skill
manager would put its subsystem in a protect-
ed state; for example, the AES skill manager
would turn off its heaters and the condensate
pump, and the BWP would reconfigure itself to
operate in a recycle mode, with both the feed
and effluent pumps off. We also made the loss-
of-RAPs communications an IPC message
broadcast by the BWP skill manager to the user
GUIs (see Unattended Operations: Supporting
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Intermittent Monitoring with a Data Manag-
ment and Distribution System). The watchdog
timers, instituted soon after the restart of the
first test point, protected the IWRS from net-
work failures through-out the remainder of the
test.

Logging-State Memory  We experienced
loss of power to the water facility five or six
times during the course of the test. In these in-
stances, the valves would remain in their last
commanded state, but all pumps would be
turned off. The primary dilatory effect was the
loss of the bacteria colonies in the BWP if the
feed water was not restored to the BWP in a
timely manner. Because the staff members had
learned to resuscitate the bacteria after the
worst-case time lapse (a power failure after the
last check at 11 pm with the lab staff members
not discovering it until 5 Am), a power failure
posed little problem.

However, with the loss of power, as well as
the numerous times the IWRS had to be halted
because of hardware failures—about 25 times
during the course of the test—it became impor-
tant to be able to restart the system quickly,
without searching the logs manually to deter-
mine the state the system was in before the
malfunction. Thus, we wrote a RAP to log the
internal state of the IWRS every 30 seconds.
When the staff members restarted the system,
the sequencer would read in the last state of
each subsystem and then determine how to re-
sume operations. This determination was pos-
sible because (1) each primitive checks the con-
dition of the valve or pump before
com-manding the device and (2) the RAP exec-
utive will skip steps in a procedure that have
been obviated by outside or serendipitous
events. To restart the reverse-osmosis sub-
sytem, for example, the sequencer might deter-
mine from the logged state file that reverse os-
mosis was last stopped 20 minutes into its
secondary phase, set the valve configurations
for secondary if they were not left in that state,
check to see that all the pumps are on for sec-
ondary operation, advance the phase timer to
+20, and resume monitoring secondary-phase
processing.

Lessons Learned
about Intelligent,
Autonomous Control

The other more important category of lessons
learned is that of using autonomous Al systems
in an arena that heretofore used little automa-
tion and no Al

We consider the use of the 31 control system

a resounding success of applied Al. The result-
ing software ran unattended for 98.75 percent
of the test period (6684 of 6768 hours), averag-
ing on the order of only 6 hours down time a
month. In an environment where the experi-
mental hardware is being tested, this achieve-
ment is especially notable and is directly attrib-
utable to the distributed, layered approach of
our control design. Additionally, it is impor-
tant to understand that although autonomy
was the order of the day, there was a need to
adjust this autonomy at various times during
the test. Finally, on a more fundamental level,
the shift from human managed control to full
autonomy had both cultural and practical im-
plications. The role of the human in managing
these systems changed from that of vigilant
hands-on managers at the control site to part-
time supervisors at remote sites, reducing the
human support from eight-hour shifts of as
many as five persons each to a few key staff
members who would intermittently check the
system every six hours. However, the change in
the humans’ role generated several new re-
quirements to support the staff members in
their data management and analysis, giving
rise to the need for a distributed data manage-
ment system.

Advantages of Distributed,
Layered Control

Calibrating instruments is an example situa-
tion of how our layered design limited system
down time. For each sensor and variable com-
mand output, for example, pressure or pump
speed, the skills used a linear equation to con-
vert the A/D counts to the appropriate device
value, for example, pounds per square inch
(psi) or rpm. Over time, the instrument output
drifted from these calibrated values and had to
be recalibrated, resulting in a new equation to
be coded in the device skill, which then had to
be recompiled. Because the instruments were
grouped by subsystem, we only had to inter-
rupt the given subsystem to restart the newly
compiled skill and then only for the few sec-
onds required for the skills to reconnect to the
IPC server.

Another situation that exploited the distrib-
uted nature of our design concerned the shut-
down of a given subsystem, for example, when
the reverse-osmosis subsystem experienced a
high-pressure event, triggering an ASD. With
the reverse-osmosis subsystem down, there
was no effluent being sent to the PPS and no
brine being produced for the AES to process.
As described in the control section earlier,
whenever the reverse-osmosis subsystem is
not providing water to the PPS, the AES would



send its condensate to the PPS. Eventually,
though, the condensate tank would empty,
and the AES would stop sending water to the
PPS. Without input water, the PPS would put
itself in standby mode; without brine to
process, the AES also put itself in standby
mode. Finally, without the reverse osmosis
drawing water from the BWP, the level in the
GLS of the BWP began to rise, causing the feed
pump to slow down to compensate. This com-
pensation continued until the feed pump was
at O rpm, effectively putting the BWP in stand-
by mode. Thus, all the subsystems responded
to the failed reverse osmosis by eventually
achieving a standby mode of operation.

A similar situation took place when a subsys-
tem was taken offline by the staff, such as
when the AES wick was being changed. Each
subsystem could be informed through the user
interface about the availability of the upstream
and downstream subsystems and would recon-
figure itself accordingly. For example, if the
AES were down, the reverse-osmosis brine
would be directed to an overflow tank, which
would subsequently be pumped back to the
AES reservoir when the AES was operational. If
the PPS were down, the AES and the reverse-os-
mosis subsystem would redirect their effluent
back to the feed tank or the drain, depending
on the needs of the test.

An advantage of the layered nature of 31 was
that it allowed us to shift computations be-
tween layers as the need arose. An example of
this shifting concerns TOC calculations. The
average and allowed TOC are computed based
on the TOC for increments of water volume
deposited in the product tank, integrated over
time. They require both a measure of the in-
stantaneous TOC reading, obtained from the
TOC analyzer in the PPS (the leftmost white
box icon in the lower left of figure 8), and the
volume of water in the product tank, measured
by a weight scale in the PPS. Whenever the
quality of the water from either the reverse-os-
mosis subsystem or the AES was low enough to
trigger a high-instantaneous TOC value, the
PPS product water was redirected to the feed
tank until such time as the quality dropped be-
low this threshold. During this time, because
no water was being deposited to the product
tank, the average and allowed TOC were not
updated.

Early in the test, the PPS experienced few
high-TOC spikes, which were of relatively
short duration. As the test wore on, however,
the AES wicks and reverse-osmosis membranes
began to degrade, the high-TOC incidents be-
came more frequent and lasted longer, and as
a result, the average and allowed TOC calcula-

tions became less and less accurate. We needed
a way to calculate the volume of water that
would have flowed into the product tank to
update the TOC calculations. Such a volume
could be computed from the flow rates of the
water coming from the reverse-osmosis subsys-
tem and the AES, but because the PPS skills and
the skills for reverse osmosis operated on two
different computer racks, the PPS skills could
not access the required flow rates. The obvious
3t solution was to have the TOC calculations
performed by the sequencing layer—which
had access to data from the AES and the re-
verse-osmosis skills as well as the instanta-
neous TOC readings from the PPS skills—dur-
ing the time the product water was being
rejected. Once the average TOC dropped below
the allowed TOC, the sequencer would redirect
the PPS output to the product tank and reseed
the PPS TOC calculations at the skill level with
the values computed during the low-water-
quality time.

Staff Member Acceptance of
Autonomous Systems

As mentioned earlier, the 31 control approach
is designed for autonomous systems. However,
in all previous tests, the ALS teams maintained
24-hour vigilance using 3 eight-hour shifts dai-
ly. The 31 system ran autonomously in these
tests, but because human presence was re-
quired for the nonautomated ALS subsystems,
the ALS teams never had to relinquish total
control to the software. Early in the IWRS
work, however, as the hardware groups were
setting their test goals, the controls group put
forth a control goal of 95-percent unattended
operations as a way of getting the water team
to start thinking about autonomous opera-
tions. Except for the power supply incident dis-
cussed earlier, the water team allowed 3T to run
autonomously from February 2001 through
the end of IWRS operations on 15 April 2002.
A fundamental indicator of the staff member
acceptance of this autonomy was that at any
time day or night, one could walk into the con-
trol room and see all the staff member chairs

empty.

The Need for Adjustable Autonomy

Although the 3t controls for iWRS were able to
run with full autonomy during hardware build
up, functional testing, and the first three
months of operation (January through March
2001), it was important that the test engineers
be able to command the system or its subsys-
tems at all levels of operation. Thus, we provid-
ed the test team with interactive interfaces that
the control engineers used for code testing.
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Figure 9. The Graphic User Interface Client for the Biological Water Processor (BWP), Showing the

Data Broadcast from the BWP Skill Manager Displayed on an
The right-hand picture shows additional data that could

These interfaces included commands for indi-
vidual pumps, valves, and relays; commands to
execute primitive RAPs (see figure 7 for an ex-
ample of a primitive RAP for turning a valve);
commands to execute mid-level RAPs, such as
executing a reverse-osmosis purge; and com-
mands to start or stop the autonomous opera-
tion of any subsystem, such as running the
BWP in a stand-alone mode.

Being able to suspend parts of the control
system’s autonomy was important as well. For
example, midway through the test, it became
necessary for the BWP engineers to manually
purge the individual tubes in the nitrifier por-
tion of the BWP. This purging often resulted
in a low-pressure condition that would trigger
a low-pressure ASD in the BWP control code,
which would stop the nitrifier pumps and air
controllers for the problem tubes. To prevent
the ASD during staff member purge opera-
tions, we modified the ASD RAP to check the
state of a RAP memory flag for statf member
purging. When the flag was present, the ASD
would put out the ASD warning but would
take no action. We then added interactive text
to the wrs display (see the “Purge by Staff”
text in the upper left of figure 8) that could be
triggered to set the staff member purge flag in
memory and start a 20-minute timer. At the
end of the 20 minutes, the timer code would
remove the flag.
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Analog of the BWP Hardware.
optionally be displayed.

Unattended Operations: Supporting
Intermittent Monitoring with a Data
Management and Distribution System

Logging the data broadcast from the skills—the
sensed values and the commands sent to the
devices—was required to support data analysis
by the staff members both during and after the
test. We developed a GUI for each subsystem in
the control room (figure 6) to display in analog
form the data broadcast from the skills (figure
9) and to set the logging rate for each subsys-
tem. Menu options on these displays allowed a
user to view logged data, set up strip charts,
and plot any data item being logged.

However, as described earlier, after the first
two months, the staff members were no longer
in the control room, but the engineers still
wanted to view these displays on their worksta-
tions in their offices. Additionally, to check the
system for network or power failures, we need-
ed to distribute the data broadcast from the
skills for remote, intermittent monitoring.

To support the engineers, we ported the
GUIs to the winDOwS environments used by
the staff members and installed the code on
their workstations. Using these GUISs, the staff
members could log data from any or all subsys-
tems to their computers as they desired, but
the logs of record were maintained in the water
lab. Throughout the test, new logging require-
ments from the water team changed the for-
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02719702 00:39:36 0 0 82 1.146 7.04 1 0 0 45 18 16 1209 0.
02719702 00:44:33 0 0 83 1.146 7.02 1 0 0 45 1 0 1209 0.
02719702 00:49:42 0 0 84 1.158 7.02 1 0 0 45 1 0 1209 0.
02719702 00:54:38 0 0 86 1.158 7.03 1 0 0 45 1 0 1209 0.
02719702 00:59:34 0 0 85 1.146 7.03 1 0 0 45 1 0 1209 0.
02719702 01:04:37 0 0 82 1.146 7.03 1 0 0 45 1 0 1209 0.
02719702 01:09:33 0 0 82 1.146 7.02 1 0 0 45 1 0 1209 0.
02719702 01:14:42 0 0 83 1.146 7.03 1 0 0 45 1 0 1209 0.
02719702 01:19:45 0 0 82 1.146 7.03 1 0 0 45 1 0 1209 0.
02719702 01:24:41 0 0 82 1.146 7.03 1 0 0 54 1 0 1209 0.
02719702 01:29:37 0 0 83 1.146 7.03 1 0 0 54 1 0 1209 0.
02719702 01:34:33 0 0 86 1.146 7.03 1 0 0 54 1 0 1209 0.
02719702 01:39:36 0 0 81 1.146 7.04 1 0 0 54 1 0 1209 0.
02719702 01:44:32 0 0 87 1.146 7.04 1 0 0 54 1 0 1209 0.
02719702 01:49:41 0 0 87 1.146 7.03 1 0 0 54 1 0 1209 0.
02719702 01:54:37 0 0 84 1.146 7.03 1 0 0 67 1 0 1209 0.
02719702 01:59:40 0 0 86 1.146 7.05 1 0 0 67 1 0 1209 0.

Figure 10. A Browser View of the Broadcast Data from the Air Evaporation System.

Data were normally recorded at five-minute intervals.

mat of the data and also the variables displayed
in the GUIs. The format of the logs allowed
viewing from the GUIs; a browser (figure 10);
and Microsoft ExcEL, a favorite analysis tool of
ALS engineers. To give the staff members access
to the latest GUI code, we made the changes
available through a National Aeronautics and
Space Administration (NASA) web page. A
prompt when a GUI started up would allow the
staff members to download the new code and
update their GUI display accordingly.

To watch the system on nights and week-
ends, we set up a duty roster of 31 control en-
gineers to monitor the system. Every six hours
from 8 aMm until midnight, the control engineer
on duty would “look in on the system” (lab
personnel taking samples in the water lab each
day checked on the system at 6 am). The duty
engineer could start up the GUI clients on
his/her remote computer at home and use a
NASA dial-up connection to receive and view
the data broadcast from the water lab. We also
made the logged data available in columnar
format at a NASA-JSC URL (figure 10) so that
the on-duty control engineer could monitor
the system from computers around the world
without the GUI software.

The previous 91-day test marked our first ex-
periences in designing displays to provide users
of 31 systems with a view into the state of the
monitored system and the 3t software. At this
time, we began developing an understanding

of how to support intermittent monitoring of
ALS systems (Thronesbery and Schreckenghost
1998). With the IWRS, we, as monitors of the
software controls system, shared many of the
same concerns as our intended users, the engi-
neers monitoring the ALS hardware. Our expe-
riences with these 24-hour-a-day, 7-day-a-week
operations allowed us to expand our under-
standing of how to support intermittent mon-
itoring.

Maintaining System Awareness The sub-
system GUIs (for example, see figure 9) helped
the user maintain system awareness by provid-
ing a quick overview, the subsystem schematic,
and additional details on demand. The more
commonly desired data (tank levels, pump
speeds) were displayed directly on the sche-
matic, and additional information was avail-
able (units, human-readable device names,
component values for a computed value) by
clicking on the schematic component in ques-
tion.

Reviewing Performance History  Al-
though only monitoring data intermittently,
the IWRS engineers needed to be able to review
performance history to detect system anom-
alies or indicators that an anomaly was devel-
oping. The IWRS engineers were also in the
process of determining efficient configurations
of equipment that were also effective at recov-
ering water for space operations. To evaluate
the performance characteristics of each test
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Figure 11. A Snapshot of the Procedures Tracking Log.

configuration, the water team made extensive
use of the data logs to support anomaly detec-
tion and performance analysis. The logs could
be displayed in a table from the displays, and
variables could be plotted for viewing perfor-
mance over time.

Responding to Problems Intermittent
monitoring requires not only that the intelli-
gent system function autonomously most of
the time but also that it is able to recognize
when failures occur and notify the human ex-
pert in a timely fashion. Initially, the GUIs sub-
scribed only to device-level data from the skill
manager layer of 31. Consequently, the primary
anomaly that could be detected was a loss of da-
ta connection between the skill manager and
the GUIS, signaled by both audible and visual
alarms. Later, the watchdog timers were added,
which indicated the health of the communica-
tions between the skills and RAPs layers of 3.
The user could then use an information pop-up
to see how long the skills and RAPs had been
out of contact with one another. This informa-
tion would also go to an error log, with time
stamps allowing the user to examine perfor-
mance history just prior to the anomaly.

Accessing Reference Information From
interactive parts of the GUIs, the user could
display the skills specifications (figure 5), al-
lowing operators to refresh their understand-
ing of how the controls work and providing ac-
cess to device nomenclature from standard
IWRS drawings used in the hardware specifica-
tions. In addition, the lead controls engineer
prepared operations notes that were used by
the remainder of the controls team to assess
the health of the software controls systems.
These operations notes were also available
from the GUI schematics displays.

Advanced Techniques Because the soft-
ware development resources were limited, we
were unable to try a number of advanced au-
tomation techniques to support intermittent
monitoring of IWRS and software controls sys-
tems. Although the combination of flow paths,
alarms, and data values in the GUIs were help-
ful in gaining a quick overview of the system,
it would have been more valuable to have in-

formation from the upper tiers of 3t, so that
the GUI information could integrate high-level
data with the observed device performance da-
ta (Schreckenghost and Thronesbery 1998). We
had two opportunities to explore this idea,
both involving the BWP sloughing operations.

When 1WRS engineers wanted to know
when automated sloughing took place so they
could monitor it during initial deployment, we
had RAPs broadcast a sloughing message and
then integrated device-level data to accompa-
ny this communication. This integrated infor-
mation was not only available in the GUI and
the log, but it was also sent to subscribing e-
mail addresses.

In an experiment conducted toward the end
of the test, we had RAPs broadcast to a web-
accessible data base information from the
RAPs procedure tracking log, a file used in the
water laboratory for controls debugging (figure
11). The experiment lasted two weeks, at a time
when we experienced no important anomalies.
Nonetheless, our experience showed that just
as the procedure tracking log was used regular-
ly during the course of the IWRS tests in the
water laboratory to determine the cause of
anomalies, the web-based tracking log infor-
mation made it possible to conduct similar ac-
tivities remotely.

Ultimately, fault diagnosis using Al tech-
niques such as model-based reasoning will alle-
viate much of the need to distribute the details
of problems that occur. Resources were not
available to provide automated fault diagnosis,
so when major problems occurred, the team
could take the IWRS “out of test” to spend sev-
eral days analyzing and solving the problem.
For an actual flight system, automated tech-
niques will be required (see Spin-Off Benefits
for the AI Community).

The Best AI Win

The most rewarding experience in the two-year
IWRS test came when one of the biological en-
gineers asked the control team to use the top
tier of 3t to help them with a particularly trou-
blesome aspect of the BWP. The nitrifying por-
tion of the BWP (figure 12) consisted of bacte-
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Figure 12. Symbiotic Biological Reactors.

Feed water flows from the packed bed on the right through the nitrifier (coiled tubes on the left and to the rear), through the gas-
liquid separator (GLS) (not shown), and back to the packed bed. The nitrifier bacteria uses oxygen (O,) to reduce feed water am-
monia (NH,) to nitrates (NO,) and nitrites (NO,), which the bacteria on the ceramic saddles in the packed bed use to remove or-
ganic carbons. Nitrogen and carbon dioxide gases are released in the GLS.
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Nitrifier Slough Schedule

Tube Pressure PressMax AirFlow Date/time of Last Slough
(psig) (psig) (sccm)

1 36.7 PR 162 9:00 4 06 02
2 22.2 PR 162 6:00 4 06 02
3 22.8 PR 162 11:17 4 06 02
4 23.3 30,8 161 9:38 4 05 02
5 8.2 #8.6 162 11:39 4 06 02
6 5.4 P A 162 9:45 4 06 02
7 5.0 PR 161 10:31 4 06 02
8 3.9 PR 161 10:31 4 06 02

Time Since Last Slough Slough Order
(mins)
215
395
78
1617
56
170
124
124

NV ANW—

Table 1. The Nitrifier Slough Interface.
The water staff members could set the maximum pressure (PressMax column) for each tube. The scheduler obtained the instantaneous pres-

sures from the Biological Water Processor.

ria that grew on the insides of eight sets of
coiled tubes through which feed water flowed.
The microbial biofilm in the tubes would grow
over time, constricting the passage of water
and air and increasing the pressure in the
tubes. If left unchecked, the tubes would clog.
When a tube clogged, the water flow increased
in the other tubes causing higher-than-normal
pressures that could shear healthy biofilm from
the walls of the tubes, thus decreasing the ni-
trification action of the reactor. To prevent the
tubes from clogging, the water team laboratory
personnel had to periodically slough the
biofilm by manually raising the airflow
through each tube to maximum for several
minutes until the pressure dropped to a nomi-
nal level. As the maturing biofilm continued to
grow, the tubes needed sloughing more fre-
quently. Eventually, the staff members were re-
quired to come in at night and on weekends to
carry out the sloughs. If the staff members for-
got or were late in sloughing a tube, as hap-
pened on a number of occasions, clogging was
the inevitable result. Soon the manual proce-
dures could not keep up with the number of
sloughs required.

About midway through the test, the subsys-
tem engineer for the BWP approached the con-
trols group to inquire if the third tier of 31
could possibly help automate the sloughing
process. That the engineer understood the use-
fulness of the top tier in relation to the other
tiers indicated that the water team had under-
stood the basic concepts behind the 3t archi-
tecture. Of course, this problem was one of
simple scheduling. We constructed a scheduler
that once an hour checked the pressure in each
tube against a maximum allowable pressure for
the tube, sorted the tubes according to this
pressure difference and the time since the last
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slough for each tube, then invoked a new RAP
that raised the airflow rate for a specified peri-
od to force a slough just as the human staff
memers did in the previous manual mode. The
scheduler interface (table 1) allowed the staff
members to adjust each tube’s maximum pres-
sure. By having the sequencer broadcast the
schedule information, we made the schedule
details part of the BWP display GUI as well as
the data logs.

Toward the end of the last IWRS test-point
run, 3T was sloughing one tube an hour each
day and night. Eventually, the air sloughs were
insufficient to bring the pressure down in a few
of the tubes, so periodic manual assistance was
required, with the staff members cleaning the
nitrifier trap filter and releasing pressure
through manual valves positioned throughout
the tube lengths. Nonetheless, without 31’s au-
to-slough, the water team would not have been
able to maintain a viable BWP after the first
half of the IWRS test.

Spin-Off Benefits
for the Al Community

Since 1995, the authors and their colleagues at
the Texas Robotics and Automation Center
Laboratories (TRACLabs) and NASA-JSC, as
well as a number of research groups around the
country, have identified several areas where Al
investigations can help with problems we have
encountered in support of ALS operations.
Such investigations have included planning
and scheduling (Schreckenghost et al. 2000),
adjustable autonomy (Schreckenghost et al.
2001), human-centered computing (Dorais
and Kortenkamp 2001), and machine learning
(Kortenkamp, Bonasso, and Subramanian
2001).

The two-year IWRS test has also spawned a



number of research efforts. The following is a
list of the past and ongoing work inspired by
the IWRS efforts:

Evaluating the application of machine
learning to the control of advanced life-sup-
port systems: The participants were NASA-JSC,
NASA-Ames, Rice University, Carnegie Mellon
University (CMU), Massachusetts Institute of
Technology (MIT), and the Naval Research Lab-
oratories. Researchers at Rice University and JSC
identified the periodic nature of optimizing
coupled life support systems and evaluated
techniques for dealing with such systems (Kor-
tenkamp, Bonasso, and Subramanian 2001). Re-
cent efforts have focused on using logged IWRS
sensor and control data to automatically build
models of system behavior, which can then be
used to monitor for off-nominal operations.

Developing a suite of visualization tools
for distributed autonomous systems: The
participants were CMU and members of
TRACLabs. Using logged data from the tWRS,
researchers developed a set of analysis and dis-
play tools that allow a user to manipulate the
data and look for relationships (Kortenkamp et
al. 2001).

Distributed crew interaction: The partici-
pants are NASA-JSC and Ohio State University.
The objective is to investigate knowledge rep-
resentations and architectures for distributed
collaboration among human and software
agents in support of automated life-support
control, in particular the 31 IWRS system
(Schreckenghost et al. 2002).

Complex event recognition: Participants
are TRACLabs and I/NET, Inc. Using IWRS data,
the project seeks to develop software tools for
detecting and storing information about im-
portant control events.

Robust methods for autonomous fault
diagnosis and control of complex systems:
Participants are Vanderbilt University and
NASA-JSC. The objective of this project is to use
probabilistic methods to diagnose failures in
complex systems (for example, the IWRS) and
adapt controllers to recover from these failures.

Finally, data and information concerning
the IWRS are available to the Al community at
large. Several simulations of the IWRS subsys-
tems (for example, Malin et al. [2002]) and the
IWRS control code exist, and data logs for the
entire test are available to any interested party.

Summary and Future Directions

After years of grafting parts of 31 to various ALS
systems, the integrated wrs test gave us an op-
portunity to prove the usefulness of the entire
intelligent control architecture in a long-run-

ning application. The test is over, and we have
learned many useful lessons concerning auton-
omy, unattended operations, and long-dura-
tion control. Although much of the hidden
power of 31 might have eluded the water engi-
neers, we feel we validated the need for Al in
this test when the test team requested an auto-
matic scheduler for the nitrifier sloughs.

Based on our experience with the IWRS, we
claim that long-running, unattended autono-
mous operations will be the norm for ALS sys-
tems in the future. There are several implica-
tions of this claim, which give rise to a number
of interesting research issues that should be
pursued. Although one could make the case
for many Al technologies being relevant in
this area, we list a few that stood out to us dur-
ing this test:

Providing commanding capability from
remote locations: Because of security reasons,
we did not investigate executing IWRS proce-
dures from outside the water laboratory, but a
number of times, it would have been conve-
nient for the members of the control team or
even the water team manager to be able to
restart a given subsystem from their home or
desk. Remote commanding naturally requires
the authorization and authentication of in-
tended users. However, allowing more than
one engineer to affect different parts of the sys-
tem simultaneously from remote locations
gives rise to issues of managing conflicting
commands, preventing inadvertent ASDs, and
informing each user of the actions of other
users making changes to the system. The dis-
tributed crew interaction project mentioned
earlier (Schreckenghost et al. 2002) is currently
investigating these issues.

Planning and scheduling complex ALS
operations: The IWRS is but one of several sys-
tems that make up a complete life-support fa-
cility for either space or planetary crews. Each
of the systems in figure 13, for example, repre-
sents the same or greater level of complexity as
the IWRS. Such an ALS system will require gen-
erative planning capabilities that must allow
for interaction by the test team or by the crew
in eventual deployed applications (Schreckeng-
host et al. 2000).

Machine learning: We discussed earlier the
natural drift of instrumentation, the need to
adjust the controls to accommodate new wait
times or set points, and the need to detect
anomalies in the IWRS subsystems. With the
large number of systems anticipated for a full
ALS, a human crew or test team will be hard
pressed to keep track of these changes without
automated assists. Machine learning tech-
niques will be necessary to provide these as-
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Figure 13. The Interacting Subsystems of an ADVANCED LIFE-SUPPORT SYSTEM
(Kortenkamp, Bonasso, and Subramanian 2001).

sists, particularly because the human crew-test
team will not be monitoring the systems in situ
and, thus, will not be as familiar with what
constitutes normal data values as it would if it
kept close watch on such systems.

Natural interfaces for control: Because users
of future ALS systems will spend little time in
front of a control console, they will tend to for-
get how to interact with multiple interfaces
such as the one shown in figure 8. This aspect of
unattended operations points to the need for
more natural interfaces, ones that are multi-
modal and flexible and allow the user to enter a
dialog for discussing the state of the system and
any actions that might need to be taken.

Smart data interfaces: As alluded to in our

lessons learned, although the analog data dis-
plays and their associated data logs (figures 9
and 10) made it possible to detect problems in
the TIWRS, the process was still time consum-
ing, particularly for system changes that were
almost imperceptible without a historic trace
of data values. For a full, unattended ALS sys-
tem, interfaces that quickly show recent trends
that will catch the user’s eye, and then easily
guide her to the particular data source, will be
mandatory. As well, the high-level information
must be combined with related device-level log
data into an integrated situation so that all re-
lated information is available to the user for in-
spection in one place (Thronesbery, Christof-
fersen, and Malin 1999).



Distributed human interaction: With
future ALS systems only needing intermittent
monitoring, human-computer interaction will
take place from locations remote from where
the automation executes. Our simple foray in-
to notifying remote users about the nitrifier
slough must eventually be extended not only
to all off-nominal events but also to any event
individual users might find of interest. It is
likely that our simple GUIs and ad hoc event
detectors would grow into full-fledged proxy
agents for each user, for example, as in Chalup-
sky et al. (2001). Our IWRS notification work is
continuing in Schreckenghost et al. (2002)
with software proxies and an analysis of notifi-
cation schemes.

We believe the ultimate goal for Al in life
support is to allow the ALS systems to run “in
the background” as it were, just like earth-
bound residential climate-control systems.
When humans must intervene, the intelligent
control system will guide them easily and
quickly to the source of the problem. Our expe-
riences with the IWRS show that Al can make
significant contributions today in ALS systems,
but there is still much work to be done for the
future.

Note

1. Our use of the Lisp language was not an issue for
the wrs engineers. Because none of them were com-
puter scientists, they depended on the control team
to select the appropriate languages for the tasks at
hand.
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the membership department (http://www.aaai.org/Organization/contact.html) (Telephone: 650-
328-3123) for details.
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