
■ Humans have a remarkable capability to perform a
wide variety of physical and mental tasks without
any measurements and any computations. Famil-
iar examples are parking a car, driving in city traf-
fic, playing golf, cooking a meal, and summarizing
a story. In performing such tasks, humans use per-
ceptions of time, direction, speed, shape, possibil-
ity, likelihood, truth, and other attributes of phys-
ical and mental objects. Reflecting the bounded
ability of the human brain to resolve detail, per-
ceptions are intrinsically imprecise. In more con-
crete terms, perceptions are f-granular, meaning
that (1) the boundaries of perceived classes are
unsharp and (2) the values of attributes are granu-
lated, with a granule being a clump of values
(points, objects) drawn together by indistinguisha-
bility, similarity, proximity, and function. For
example, the granules of age might be labeled very
young, young, middle aged, old, very old, and so
on.

F-granularity of perceptions puts them well
beyond the reach of traditional methods of analy-
sis based on predicate logic or probability theory.
The computational theory of perceptions (CTP),
which is outlined in this article, adds to the arma-
mentarium of AI a capability to compute and rea-
son with perception-based information. The point
of departure in CTP is the assumption that percep-
tions are described by propositions drawn from a
natural language; for example, it is unlikely that
there will be a significant increase in the price of
oil in the near future.

In CTP, a proposition, p, is viewed as an answer to
a question, and the meaning of p is represented as
a generalized constraint. To compute with percep-
tions, their descriptors are translated into what is
called the generalized constraint language (GCL).
Then, goal-directed constraint propagation is uti-
lized to answer a given query. A concept that plays
a key role in CTP is that of precisiated natural lan-
guage (PNL).

The computational theory of perceptions suggests
a new direction in AI—a direction that might

enhance the ability of AI to deal with real-world
problems in which decision-relevant information
is a mixture of measurements and perceptions.
What is not widely recognized is that many impor-
tant problems in AI fall into this category.

Since its inception in the early fifties, AI has
scored a number of major successes,
among them the defeat of Gary Kasparov

by DEEP BLUE. However, what we also see is that
alongside the brilliant achievements lie areas
in which progress has been slow and difficult
to realize. In such areas, problems do not lend
themselves to precise formulation, and the
underlying modes of reasoning are approxi-
mate rather than exact. A case in point is the
problem of summarization—a problem that is
orders of magnitude more complex than the
problem of machine translation. Although
substantial progress has been realized (Mani
and Maybury 1999), we are still far from being
able to construct programs that are capable of
summarizing a nonstereotypical story or pro-
viding a synopsis of a book.

Why is it that major successes have been
achieved in some areas but not in others? A
thesis that I should like to put on the table is
that progress has been, and continues to be,
slow in those areas where a methodology is
needed in which the objects of computation
are perceptions—perceptions of time, distance,
form, direction, color, shape, truth, likelihood,
intent, and other attributes of physical and
mental objects.

Humans have a remarkable capability to per-
form a wide variety of physical and mental
tasks without any measurements and any com-
putations. Everyday examples of such tasks are
parking a car, driving in city traffic, playing

Articles

SPRING 2001    73

A New Direction in AI
Toward a Computational 

Theory of Perceptions

Lotfi A. Zadeh

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2001 / $2.00



granules of the variable age (figure 2). In this
perspective, natural languages can be viewed as
systems whose primary function is to describe
perceptions.

Information granulation plays key roles in
both human and machine intelligence. Modes
of information granulation in which the gran-
ules are crisp, that is, c-granular (figure 3), play
important roles in a wide variety of methods,
approaches, and techniques. Among them are
interval analysis, quantization, rough-set theo-
ry, diakoptics, divide and conquer, Dempster-
Shafer theory, machine learning from exam-
ples, chunking, qualitative process theory,
qualitative reasoning, decision trees, semantic
networks, analog-to-digital conversion, con-
straint programming, Prolog, and cluster
analysis.

Important though it is, crisp information
granulation has a major blind spot. More
specifically, it fails to reflect the fact that in
much, perhaps most, of human reasoning and
concept formation, the granules are fuzzy (f-
granular) rather than crisp. In the case of a

golf, cooking a meal, and summarizing a story.
In performing such tasks, for example, driving
in city traffic, humans base whatever decisions
have to be made on information that, for the
most part, is perception, rather than measure-
ment, based. The computational theory of per-
ceptions (CTP), which is outlined in this
article, is inspired by the remarkable human
capability to operate on, and reason with, per-
ception-based information.

An essential difference between measure-
ments and perceptions is that in general, mea-
surements are crisp, whereas perceptions are
fuzzy (figure 1). Furthermore, the finite ability
of sensory organs to resolve detail necessitates
a partitioning of objects (points) into granules,
with a granule being a clump of objects (points)
drawn together by indistinguishability, similar-
ity, proximity, or function. Thus, perceptions,
in general, are both fuzzy and granular or, for
short, f-granular. For example, a perception of
age can be described as very young, young,
middle aged, old, and very old, with very
young, young, and so on, constituting the
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• Dana is 25. • Dana is young.

• It is 85°. • It is hot.

• Unemployment is 4.5%. • Unemployment is low.

• It is the expected value. • It is the usual value.

• It is the continuous function. • It is the smooth function.

• There is no counterpart. • Most Swedes are blond.

• There is no counterpart. • It is likely to rain in the evening.

Information

Data

 Measurement Based Perception Based

Numeric Linguistic

Figure 1. Structure of Information.
Examples of measurement-based and perception-based information.



human body, for example, the granules are
fuzzy in the sense that the boundaries of the
head, neck, arms, legs, and so on, are not
sharply defined. Furthermore, the granules are
associated with fuzzy attributes, for example,
length, color, and texture in the case of hair. In
turn, fuzzy attributes can have fuzzy values; for
example, in the case of the fuzzy attribute
length (hair), the fuzzy values could be long,
short, very long, and so on. The fuzziness of
granules, their attributes, and their values is
characteristic of the ways in which human
concepts are formed, organized, and manipu-
lated (Zadeh 1997; Dubois and Prade 1996).

There is an enormous literature on percep-
tions, spanning psychology, philosophy, lin-
guistics, neuroscience, cognitive science, sys-
tem theory, and other fields (Barsalou 1999;
Vallee 1995). However, what is not in existence
is a theory in which perceptions are objects of
computation, as they are in CTP.

In the computational theory of perceptions,

the point of departure is not, in general, a col-
lection of perceptions; rather, it is a collection
of descriptions of perceptions expressed in a
natural language. Consider the following
examples: (1) Dana is young, (2) Dana is much
younger than her husband, (3) Michelle has
long hair, (4) most Swedes are tall, (5) overeat-
ing causes obesity, (6) usually Robert returns
from work at about 6 pm, and (7) it is very
unlikely that there will be a significant increase
in the price of oil in the near future. Thus, a
basic assumption in CTP is that perceptions are
represented as propositions in a natural lan-
guage.

The principal aim of CTP is the development
of a machinery for computing and reasoning
with perceptions. A simple example of reason-
ing with perceptions is the following: Assume
that we start with the antecedent perceptions
that “most young men are healthy” and that
“Robert is a young man,” where most is a per-
ceptual (fuzzy) quantifier that is defined by its
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ories, it is standard practice to exclude the less
general theory from the more general theory,
leaving a theory that complements the less
general theory. Thus, in this sense, for exam-
ple, linear system theory and nonlinear system
theory are complementary. The same applies to
the complementarity of qualitative reasoning
and CTP. In more specific terms, the following
examples illustrate the types of problems that
fall within the scope of the computational the-
ory of perceptions.

First is perception-based function modeling. Per-
ception of a function can be described as a col-
lection of linguistic if-then rules, with each rule
describing a fuzzy granule. For example, in the
case of the function, f, shown in figure 5, a
description of a perception of f can be
expressed as

If X is small, then Y is small.
If X is medium, then Y is large.
If X is large, then Y is small.

Given a perception-based description of a func-
tion, f, various standard questions can be
raised; for example, what is the maximum val-

membership function (figure 4). Then, it can
be shown that the consequent perception can
be expressed as “it is likely that Robert is
healthy,” where likely is a fuzzy probability
whose membership function coincides with
that of most. Note that the result of computa-
tion in this case is in agreement with intuition.

Within AI, there are methodologies, promi-
nent among which are qualitative reasoning
and qualitative process theory (QPT) (Sun
1994; Raiman 1991; Davis 1990; de Kleer and
Bobrow 1984; Forbus 1984; Kuipers 1984), that
provide effective tools for dealing with inter-
val-valued types of perception-based informa-
tion. In relation to these methodologies, the
computational theory of perceptions is com-
plementary rather than competitive. More
concretely, a basic difference between qualita-
tive reasoning and CTP is that in qualitative
reasoning, granulation is crisp, whereas in CTP,
granulation is fuzzy. Because fuzzy granulation
subsumes crisp granulation, CTP, in principle,
has a higher level of generality than qualitative
reasoning. However, in comparing the two the-
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X = 2 X is small.

temp = 85° temp ≥ 85°  Temp is hot.

X = a X ∈ A X is A*.

Generality

0 ≤ X ≤ 5

Information

Data

Singular f Granularc Granular

Figure 3. Classification and Successive Generalization of Modes of Granulation: 
Singular, C-Granular, and F-Granular.



ue of f? Such questions are representative of
perception-based computations in which the
objects of computation are perception-based
models of functions (Zadeh 1999).

Second is perception-based system modeling. A
system, S, is assumed to be associated with tem-
poral sequences of input X1, X2, …; output Y1,
Y2, …; and states S1, S2, …. S is defined by the
state-transition function f

St+1 = f(St, Xt)

and the output function g

Yt = g(St, Xt).

In perception-based system modeling, the
input, the output, and the states are assumed
to be perceptions, as are the state-transition
function, f, and the output function, g. Thus, a
perception-based model of S would consist of a
collection of linguistic if-then rules of the
generic form “if  Xt is At and St is Bt , then St+1
is Ct, and Yt is Dt, t = 1, 2, …, where At, Bt, Ct,
Dt, t = 1, 2, …, are f-granular perceptions of the
values of Xt, St, St+1, and Yt (figure 6).

It is important to note that much of human
decision making in everyday settings involves
a knowledge of perception-based models of
various systems, for example, when we drive a
car, balance a pole, and play golf. It is of inter-
est to note that perception-based system mod-

eling underlies what we normally view as com-
monsense and qualitative reasoning (Struss
1990; Mavrovouniotis and Stephanopoulos
1987; Forbus 1984; Kuipers 1984; Zadeh 1973;
McCarthy and Hayes 1969).

Third is perception-based time-series analysis.
In dealing with time series, the usual assump-
tion is that their elements are numbers. In per-
ception-based time-series analysis, the assump-
tion is that the elements are perceptions, for
example, small, medium, and large (figure 7). A
question that can be raised is, What is the aver-
age value of a given time series? An important
problem in perception-based time-series analy-
sis is forecasting in the context of time series
that are sequences of perceptions rather than
measurements.

Fourth is the solution of perception-based equa-
tions. An example would be solving a system of
equations with perception-based coefficients;
for example,

small • x + large • y = medium
medium • x + small • y = large

Fifth is computation with perception-based
probabilities. In probability theory, the usual
assumption is that probabilities are numeric. In
reality, most probabilities, and especially sub-
jective probabilities, are perception based. For
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example, I might have the perception that
most balls, in a box that contains balls of vari-
ous sizes, are large. In this case, a perception of
the probability that a ball drawn at random is
large might be described as most, where most is
interpreted as a fuzzy proportion (figure 2).

A less simple version of this example is the
following: Assume that a box contains balls of
various sizes and that my perceptions are (1)
there are about 20 balls in the box; (2) most are
large, and (3) a few are small. The question is,
What is the probability that a ball drawn at
random is neither large nor small?

As a further example of perception-based
probabilistic reasoning, assume that I know
that usually Robert returns from work at about
6 PM. The question is, What is the probability
that Robert is home at 6:30 PM? Another ques-
tion is, What is the earliest time that the prob-
ability that Robert is home is high?

As was stated at an earlier point, existing
methods for dealing with perception-based
information are effective when perceptions are
interval valued or, more generally, c-granular.
However, in most everyday settings, percep-
tion-based information is, as a rule, f-granular
rather than c-granular. In this perspective, the
importance of the computational theory of
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f : If X is small, then Y is small.

   If X is medium, then Y is large.

   If X is large, then Y is small.
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Figure 5. Perception-Based Function Representation as a Collection of Linguistic If-Then Rules.
The granules in the (X, Y) space are Cartesian products of the granules in the X space and Y space.

Input:  X1, X2, ... 
Output:  Y1, Y2, ...
States:  S1, S2, ... 
State-Transition Function:  St+1 = f(St, Xt), t = 1, 2,...
Output Function:  Yt = g(St, Xt)

If St is small and Xt is small, then St+1 is small. 
If St is small and Xt is medium, then St+1 is large. 

SX Y

Figure 6. Perception-Based System Modeling.
Transition and output functions are represented as collections of linguistic if-then
rules.



perceptions derives in large measure from the
fact that it provides a capability to process per-
ception-based information that is not con-
strained to be c-granular.

To be able to reason with perceptions, it is
necessary to have a means of representing their
meaning in a form that lends itself to compu-
tation. The expressive power of conventional
predicate-logic–based meaning representation
languages is insufficient for this purpose. This
applies to very simple propositions such as
“most balls are large” and “usually Robert
returns from work at about 6 PM” and even
more so to a proposition such as “it is very
unlikely that there will be a significant increase
in the price of oil in the near future.”

In the computational theory of perceptions,
meaning representation is based on the use of
what is referred to as constraint-centered seman-
tics of natural languages (CSNL). CSNL is a key
part of CTP. The basic concepts underlying
CSNL are outlined in the following section.

Constraint-Centered Semantics
of Natural Languages

The point of departure in CSNL is a set of four
basic assumptions.

First, a proposition, p, is an answer to a ques-
tion, q. In general, q is implicit rather than
explicit in p.

Second, the meaning of p is a generalized
constraint on a variable. In general, both the
variable and the constraint to which it is sub-
jected are implicit in p. The canonical form of
p, CF(p), places in evidence the constrained
variable and the constraining relation.

Third, a proposition, p, is viewed as a carrier
of information. The canonical form of p defines
the information that p carries.

Fourth, in CTP, reasoning is viewed as a form
of computation. Computation with percep-
tions is based on propagation of generalized
constraints from premises (antecedent proposi-
tions) to conclusions (consequent proposi-
tions).

In one form or another, manipulation of
constraints plays a central role in a wide variety
of methods and techniques, among which are
mathematical programming, constraint pro-
gramming, logic programming, and qualitative
reasoning. However, in these methods and
techniques, the usual assumption is that a con-
straint on a variable X is expressible as X ∈ A,
where A is a crisp set, for example, a ≤ X ≤ b. In
other words, conventional constraints are pos-
sibilistic in the sense that what they constrain
are the possible values of variables.

The problem is that natural languages are

much too rich to fit the Procrustean bed of con-
ventional constraints. For, example, the sign in
a hotel, “checkout time is 11 AM,” constrains
the checkout time. However, can it be repre-
sented as “checkout time = 11 AM” or as some
other straightforward variation? Clearly,
“checkout time is 11 AM” does not have a sim-
ple representation.

If our goal is to represent the meaning of a
proposition drawn from a natural language as
a constraint on a variable, then what is needed
is a variety of constraints of different types—a
variety that includes the standard constraint as
a special case. This is what underlies the con-
cept of a generalized constraint (Zadeh 1986)
in CSNL.

A generalized constraint is represented as X
isr R, where isr, pronounced “ezar,” is a variable
copula that defines the way in which R con-
strains X. More specifically, the role of R in rela-
tion to X is defined by the value of the discrete
indexing variable r. The values of r and their
interpretations are defined in figure 8.

As an illustration, when r = e, the constraint
is an equality constraint and is abbreviated to
=. When r takes the value d, the constraint is
disjunctive (possibilistic), and isd, abbreviated to
is, leads to the expression X is R, in which R is
a fuzzy relation that constrains X by playing
the role of the possibility distribution of X
(Zadeh 1997; Lano 1991; Novak 1991).

As alluded to already, the key idea underly-
ing CSNL is that the meaning of a proposition,
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S = {p1, p2, p3, ...}

Example: S = {small, small, large, ...}
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• Correlation Analysis
• Frequency Analysis
• Forecasting
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Figure 7. Perception-Valued Time-Series Analysis.



the possibility that Mary is 25 given that Mary
is young is 0.8.

If the question is the second one, the mean-
ing of p would be represented as

p → Person(young) isv Mary

in which the constrained variable is
Person(young), and isv is a veristic constraint.
Thus, if Mary is 25, and the grade of member-
ship of 25 in young is 0.8, then the verity (truth
value) of the proposition “Mary is young” is
0.8.

As a further example, consider the proposi-
tion p: Carol lives in a small city near San Fran-
cisco. Assume that the question is, What is the
location of residence of Carol? Representation
of the meaning of p would proceed as follows:

Construct an explanatory database, ED, that
consists of relations in terms of which the
meaning of p is defined (Zadeh 1986). Assume
that the relations in ED are

ED = POPULATION[Name; Residence] +
SMALL[City; µ] +
NEAR[City1; City2; µ]

In this case,

X = Residence(Carol) 
= ResidencePOPULATION[Name = Carol]

and

R = SMALL[City;µ] ∩
City1NEAR[City2 = San_Francisco]

In R, the first constituent is the fuzzy set of
small cities, the second constituent is the fuzzy
set of cities that are near San Francisco, and ∩
denotes the intersection of these sets. A left
subscript denotes projection on the domain of
the displayed variable.

An important concept that emerges from a
synthesis of the concepts of CSNL and GCL is
precisiated natural language (PNL). In essence,
PNL is a subset of a natural language that con-
sists of propositions that are precisiable
through translation into GCL (figure 9). In this
perspective, GCL plays the role of a precisiation
language, with the understanding that precisi-
ation of meaning is not coextensive with rep-
resentation of meaning. For example, in the
proposition “usually Robert returns from work
at about 6 PM,” a request for precisiation might
be expressed as “I understand what you mean
but could you be more precise about the mean-
ing of ‘usually’ and ‘about 6 PM’.”

The importance of the concept of PNL
derives from the fact that by construction, GCL
is maximally expressive because it incorporates
all possible constraints and their combina-
tions, modifications, and qualifications. It fol-
lows then that PNL is the largest subset of a
natural language that admits precisiation. The
high expressive power of PNL allows it to serve

p, can  be represented as a generalized con-
straint on a variable. Schematically, this is rep-
resented as

with the understanding that the target lan-
guage of translation is the language of general-
ized constraints, that is, GCL. Thus, translation
is viewed as explicitation of the constrained
variable, X; the defining indexing variable, r;
and the constraining relation, R. In general, X,
r, and R are implicit rather than explicit in p.
Furthermore, X, r, and R depend on the ques-
tion to which p is an answer. Thus, explicita-
tion makes explicit what is implicit in p.

As a simple example consider the proposi-
tion

p:   Mary is young.

In this case, there are two possible questions:
(1) How old is Mary? and (2) Who is young?
Typically, p would be an answer to question 1.
Such a question is referred to as the default
question, that is, the question that would nor-
mally be assumed unless explicitly stated to the
contrary.

Assuming that the question is the first one,
the meaning of p would be represented as 

p → Age(Mary) is young

where Age(Mary) is the constrained variable;
young is the constraining relation; and the con-
straint defines the possibility distribution of
Age(Mary). If the membership function of
young is defined as shown in figure 2, then the
same function defines the possibility distribu-
tion of Age(Mary). More specifically, if the grade
of membership of, say, 25 in young is 0.8, then

p X R
licitation

translation

exp

  → isr
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Figure 8. Interpretations of Values of Indexing Variable, r.

e : equal (abbreviated to =)
d : disjunctive (possibilistic) 

(abbreviated to blank)
n : veristic
p : probabilistic
l : probability value
u : usuality
rs : random set
rfs : random fuzzy set
fg : fuzzy graph
ps : rough set (Pawlak set)
. : …



as a powerful definition language, opening the
door to (1) definition of new concepts and (2)
redefinition of existing concepts in a more gen-
eral setting. Simple examples of definitions are
the concept of a smooth function and the con-
cept of the usual, rather than expected, value
of a random variable. Examples of PNL-based
redefinition are stability, Pareto optimality, and
statistical independence.

A question arises about what can be said
about concepts that do not admit presiciation
within the framework of PNL. An example of
such a concept is causality. Another example is
randomness. Such concepts will be said to be
amorphic.

Reasoning with Perceptions
Based on Generalized Constraint

Propagation
In the computational theory of perceptions,
perceptions play the role of carriers of informa-
tion. Thus, reasoning with perceptions
involves a process of arriving at answers to
specified questions given a collection of per-
ceptions that constitute the initial data set
(IDS). As a simple example, assume that the
IDS consists of perceptions

p1 :  Most Swedes are tall.
p2 :  Most Swedes are blond.

The question is, What fraction of Swedes are

both tall and blond?
The generalized constraint propagation (GCP) is

a process that involves successive application
of a collection of rules that govern combina-
tion, modification, qualification, and propaga-
tion of generalized constraints.

One of the basic rules governing GCP is the
compositional rule. In its generalized generic
form, it is expressed as

In particular, for probabilistic constraints, it
reduces to the familiar Bayesian rule for combi-
nation of probabilities

where Y | X denotes Y conditioned on X, and •
is the convolution of the probability distribu-
tion of X with the conditional probability dis-
tribution of Y given X.

Similarly, in the case of possibilistic con-
straints, the compositional rule reads

where R • S is the composition of the possibil-
ity distribution of X with the joint possibility

X R

X Y S
Y R S

 is 

( , ) is 
 is •

X P isp 

Y X isp Q

Y isp P Q•

X R

X Y S

Y T

isr  

iss 

ist 

,( )
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Figure 9. PNL as a Precisiated Subset of a Natural Language.
PNL - precisiated natural language. CSNL = constraint-centered semantics of natural languages.
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as

In this constraint-propagation rule, f(X) is R
plays the role of an antecedent constraint that
is an explicitation of a given perception or per-
ceptions, X is the constrained variable, f is a
given function, R is a relation that constrains
f(x), g is a given function, and f–1(R) is the
preimage of R.

In effect, f(X) is R is a generalized constraint
that represents the information conveyed by
antecedent perception(s), and g(X) is g(f–1(R))
defines the induced generalized constraint on a
specified function of X. As an elementary
example, assume that the initial data set con-
sists of two perceptions:

p1: Most Swedes are tall.
p2: Most Swedes are blond.

Explicitations of p1 and p2 can be expressed as

∑Count(tall.Swedes/Swedes) is most
∑Count(blond.Swedes/Swedes) is most

where 

∑Count(tall.Swedes/Swedes)

and 

∑Count(blond.Swedes/Swedes) 

represent, respectively, the proportions of tall

f X R

g X g f R

( )
( ) ( )(

is  

is  –1

distribution of X and Y. For example, from the
perceptions

p1:Mary is tall → Height(Mary) is tall
p2:Chris is much taller than Mary →

(Height(Chris), Height(Mary)) is much.taller
we can infer the perception “Chris is T,” where
T = tall • much.taller. The • symbol is the oper-
ation of composition (Zadeh 1973). In this
operation, conjunction and disjunction are
usually assumed to be max and min, respec-
tively. More generally, conjunction and dis-
junction can be, respectively, a t-norm and t-
conorm (Pedrycz and Gomide 1998).

Computational rules governing GCP
become more complex when the constituent
constraints are heterogeneous. For example, if
X is constrained probabilistically, and (X, Y) is
constrained possibilistically, as in

then the constraint on Y is of random set type.
Such constraints play a central role in the
Dempster-Shafer theory of evidence (Shafer
1976).

The principal rule of inference in the com-
putational theory of perceptions is the general-
ized extension principle (Zadeh 1999) (figure 10).
For possibilistic constraints, it can be expressed

X P

X Y R

isp

isrs

 

is 

Y  T

,( )
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f (X) is A

g(X) is g(f –1(A))

(v) = sup u(µA(f (u)))
g(f –1(A))

g(f –1(A))

f –1(A) µA(f(u))

µA(f(u))

subject to: v = g(u)
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A

Figure 10. Schematic of the Generalized Extension Principle.
f(X) is A is a given constraint on X, and g(f–1(A)) is the induced constraint on g(X). Computation of the induced
constraint reduces to the solution of a variational problem.



Swedes and blond Swedes among Swedes.
Application of the generalized extension prin-
ciple leads to the following expression for the
consequent constraint

∑Count(tall.and.blond.Swedes/Swedes) 
is 2most – 1

which retranslates into

(2most –1) Swedes are tall and blond

In this expression, the membership functions
of most and 2most – 1 are related, as shown in
figure 4. Details of the derivation are shown in
the box.

Note that in p1, tall is quantifiable by height,
but blond in p2 is not. When an attribute is not
quantifiable, the grade of membership is asso-
ciated directly with an individual rather than
through an attribute. In many applications,
especially in the realm of control, elicitation of
grades of membership is carried out through
the use of automated learning techniques
drawn from neurocomputing and evolutionary
computing (Pedrycz and Gomide 1998).

In a general setting, application of the gen-
eralized extension principle transforms the
problem of reasoning with perceptions into the
problem of constrained maximization of the
membership function of a variable that is con-
strained by a query. The examples considered
earlier are simple instances of this process
(Zadeh 1999).

What we see is that the machinery of the
CTP bears little resemblance to the inference
engine of predicate logic. At this juncture, CTP
can be viewed as a direction—a direction that
has a promise of enhancing the ability of AI to
address problems in which the information
that decisions are based on is perceptual in
nature. This applies, in particular, to informa-
tion about probabilities. More specifically, in
most real-world settings, probabilities are not
known precisely. What is known about them
is, in the final analysis, based on perceptions
rather than measurements.

Concluding Remarks
The CTP that is outlined in this article is not
intended to replace traditional measurement-
based methods. In effect, the theory is an addi-
tional tool that complements, rather than
competes with, standard methods. The impor-
tance of CTP derives from the fact that much of
human decision making and commonsense
reasoning is, in reality, perception based. The
principal features of CTP can be summarized as
follows:

First, perceptions are assumed to be
described by propositions drawn from a natur-

al language. Second, perceptions are assumed
to be f-granular. Third, the meaning of a per-
ception is expressed as a generalized constraint
of the form X isr R or as a combination of such
constraints. Translation is viewed as explicita-
tion of X, r, and R. Fourth, reasoning or compu-
tation with perceptions involves a goal-direct-
ed propagation of generalized constraints from
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Computation with propositions that contain perceptual
quantifiers such as most, several, and few requires a defini-
tion of cardinality of a fuzzy set to make it possible to answer
a question such as, What fraction of Swedes are tall?

In fuzzy logic, cardinality is defined in two ways: (1) crisp
cardinality, which is simpler; and (2) fuzzy cardinality. In this
article, I consider only crisp cardinality.

If A and B are fuzzy sets in U = {u1, …, uN) with respective
grades of membership α1, …, αN and β1, …, βN, then the sig-
ma count of A is defined as

and the relative sigma count of elements of A that are in B is
defined as

where ∧ is min.
A basic identity involving sigma counts is the following:

∑Count(A) + ∑Count(B) = 
∑Count(A � B) + ∑Count(A � B)

which is analogous to the basic identity for probabilities:

P(A) + P(B) = P(A � B) + P(A � B)

From the identity, it follows that

∑Count(A) + ∑Count(B) – N ≤ ∑Count(A � B) ≤
∑Count(A) ∧ ∑ Count(B)

Now, in the example under consideration, A = tall.Swedes, 
B = blond.Swedes, and

Substituting the given sigma counts into the inequalities, we
obtain

Assuming that most is monotonic (figure 2), we can conclude
that

1
N

Count(tall.Swedes blond.Swedes) is 2most – 1∩∑

2 1
1

most
N

most– ≤ ∩ ≤∑Count(tall.Swedes blond.Swedes)

1
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N
Count blond Swedes Swedes
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∑

∑
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i i

i

i
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