
A Representation System User Interface
For Knowledge Base Designers

Richard E. Fikes

Cognitive and Instructional Sciences Group
Xerox Palo Alto Research Center

Palo Alto, California

A MAJOR STRENGTH of frame-based knowledge repre-
sent,ation languages is their ability to provide the knowledge
base designer with a concise and intuitively appealing means
of expression. The claim of intuitive appeal is based on
the observation that the object-centered style of descrip-
tion provided by these languages often closely matches a
designer’s understanding of the domain being modeled and
therefore lessens the burden of reformulation involved in de-
veloping a formal description.

To be effective as a knowledge base development tool,
a language needs to be supported by an implementation
t,hat facilitates creating, browsing, debugging, and editing
the descriptions in the knowledge base. We have focused
on providing such support in a SmallTalk (Ingalls, 1978)
implementation of the KL-ONE knowledge representation
language (Brachman, 1978), called KloneTalk, that has been
in use by several projects for over a year at Xerox PARC. In
this note, we describe those features of KloneTalk’s display-
based interface that have made it an effective knowledge
base development tool, including the use of constraints to
automatically determine descriptions of newly created data
base items.

Several people have contributed ideas and effort to KloneTalk. In par-
ticular, Austin Henderson was a co-initiator of t,he project, a major con-
tributor to the system’s design, and a participant in the programming
Ron Brachman, Steve Weyer, and Ira Goldstein provided significant
consulting support, and Ben Cohen participated in the programming.

Viewing and Editing a Knowledge Base

KL-ONE provides a language for describing an inheritance
network of generac and individual concepts. For the purposes
of this discussion, a generic concept can be considered to be a
description template (“frame, ” “unit”) from which descrip-
tions of individuals, in the form of individual concepts, are
formed.

To initiate interaction with a knowledge base, some sort
of index or “table of contents” is needed. In KloneTalk, we
provide a network andex wandow containing alphabetically
ordered lists of names of the network’s generic and individual
concepts. A menu is available in an index window to perform
network oriented operations such as “pretty printing” (as
in LISP) a portion of the network onto text files. Also,
the user can select a name in a list and obtain a menu of
operations applicable to the selected concept. The operations
include renaming, removing from the network, and viewing
the concept.

Knowledge base design requires viewing and editing al-
ready existing descriptions. KloneTalk allows the user to
s6lect a concept in the network index window and request
a view of it. Such an operation causes the appearance on
the screen of a new window called a concept vaewer (with a
size and location specified by the user) containing a “pretty
printed” description of the concept in a simple parenthesis
language. Each generic concept in KL-ONE is considered to

28 THE AI MAGAZINE Fall 1982

A Rcprcscntation System User Interface for Knowlcdgc hsc Iksigncrs

[Person
(Roles:

(mother
(ValueIsA: Woman)
(Number: 1))

(father
(ValueIsA: Man)
(Number: 1))

(child
(ValueIsA: Person))

(sex
(ValueIsA: SexType)
(Number: l]

Explanrrtion of Syntax
Name of the concept.

Name of the first role.

Constrains a Person’s mother to be a Woman.

Constrains a Person to have exactly 1 mother.

The number of children is unconstrained.

Figure 1. The “Person” generic concept

be a specialization of a collection of other generic concepts
and is defined by describing a set of attributes (called roles)
an d a set of constraints (called role set relations) that, must
hold among the values of the attributes for any individuation
of the concept, Figure 1 shows an example of a view of a
simple generic concept

Editing is done primarily by using the standard Small-
Talk text edit,or to modify concept descriptions in concept
viewers When the desired changes to a description have been
ride, a “compile” menu operation is available to replace the
old version of t,he concept by the new one in the network

The definition of a concept in KL-ONE includes inherited
informat,ion obtained from the concept,‘s super-concepts and
“local” information specific to the concept, being defined.
Only the local portion of the definition is editable, since the
inherited information is a part of the dcfinit,ion of the su-
per concepts IIowever, the user often wants to see the en-
tire definition in a view of a concept. Hence, some device
is needed to distinguish for the user which parts of the
dcfinitiori are editable. 111 KloncTalk, the inclusion of in-
hcrit,ed information in a view is opt,ional, and when included,
the local information is displayed in bold face to distinguish
it, from t,he inherited information. Figurt 2 shows such a
view that includes both the local and inherited infoimation

The view of a concept provided in a concept viewer
does not include all the information that a user might want
to know about the conrrpt. For example, it, dots not list
the concept’s individuals or specializations, nor does it list.
t,hose roles of other concepts whose value restriction is t,hc.
concept being viewed (The value restrzctzon of a role is a
generic concept,, and it indicates that any value of the role

must be an individuation of the generic.) To provide easy
access to such commonly requested additional information,
KloneTalk provides with each concept viewer a vzewer menu

whose information operations display their answers as lists
of the names of the requested items.

Browsing a Knowledge Base

The knowledge base designer often wants to find out in-
formation about concepts that are related to a concept cur-
rently being viewed (i.e., to “browse” through the network)
KloneTalk provides that capability by allowing the user to
select the name of any concept mentioned in a view and t,hcn
apply the operations on the viewer menu to the selected con-
cept,. For example, one could obtain a list of the specializa-
tions of the value restriction of one of the viewed roles
Viewer menu operations include ones that display a view of
the selcctcd concept, so that the user can obtain a view of
any other concept mentioned in the current view. The new
view can optionally appear in the same window (displacing
the existing description) or in a new concept viewer. Thus,
for example, OJK could obtain a view of a concept that the
current concept specializes.

To further facilitate browsing in KloneTalk, whenever a
list of concept names is displayed by an information opera-
tion, any name on the list can be selected and the viewer
menu then applies to the sclect,ed item. So, for example,
the user can display a list of the specializations of a concept
and then request a list of the individuals of one of those
specializations

THE AI MAGA%TNlI: Fall 1982 29

[Woman (aKindOt Person)
(Comment: A Person whose sex is female.)
(Roles:

(mother (from: Person)
(ValueIsA: Woman)
(Number: 1))

(father (from: Person)
(ValueIsA: Man)
(Number: 1))

(child (from: Person)
(ValueIsA: Person))

(sex (from: Person)
(Value: Female)
(Number: I.]

Figure 2. The “Woman” generic conept with local information shown in bold.

Extending a Knowledge Base

We have found in using KloneTalk that a significant
portion of our time is spent defining new concepts. Hence, we
have focused on ways of easing that task. In this section we
describe the facilities included in KloneTalk for that purpose.

Templates. The most primitive mechanism in the sys-
tem is simply a menu-initiated operation for displaying a
concept viewer containing a text template for a concept. The
user can then edit the template and compile the resulting
description in the network. The templates are particularly
useful to a new or casual user who is unfamiliar with the
details of the concept description language.

Specialization and Individuation. The most com-
mon method of defining new concepts is to use the network
extension operations specialize and indzviduate, available on
the viewer menu. Those operations prompt the user for
the name of the specialization or individual, create an ap-
propriate concept with that name if one is not already in the
network, and then establish the appropriate specialization or
individuation links. As is the case for all viewer menu opera-
tions, the concept being specialized or individuated is either
the one being viewed or one whose name has been selected
by the user.

Once a new specialization or individual has been created,
the user is faced with the task of describing the new concept.
A description consisting of the inherit,ed information already
exists for the new concept, and that description can provide
a template-like context in which to specify the concept’s dis-
tinguishing features by indicating the roles and constraints
that are available for modification. The description task then
becomes one of modifying and adding to (i.e., specializing)
the existing description.

30 THE AI MAGAZINE Fall 1982

KloneTalk facilitates this style of description by having
the viewer menu apply to the new concept after a network
extension operation. So, for example, a user can specialize
a concept and then obtain a view of the specialization in
preparation for augmenting its definition via text editing
operations.

Automatic definition of mentioned concepts and
roles. During the editing of a concept description, one often
wants to mention concepts and roles that have not yet been
defined. The KloneTalk concept description compiler sup-
ports that process by automatically defining any item men-
tioned in a description that does not yet exist in the network
and including in the description of the new item whatever
information it has from the compilation context. So, for ex-
ample, if a role’s value is not already in the network, then
it will be created as an individual concept individuating the
role’s value restriction.

Using constraints to augment descriptions The
constraints included in generic concept descriptions provide
information that can be used to determine parts of the
description of individual concepts. The system can automati-
cally add to the description of individuals whatever infor-
mation it can deduce from such constraints, thereby freeing
a user from the need to enter redundant information and
protecting against the entry of information that violates the
constraints.

We have implemented such a capability in KloneTalk for
one frequently used form of constraint, called a role value
map (RVM). An RVM constrains each individuation of a
generic by specifying that one set of role values associated
with that individual must be equal to or be a subset of a
second set of role values associated with that individual
For example, in the description of a “Parent,age” given in

A Rcprcscntation System User Intcrfacc for Knowkdgc I&xc Dcsigncrs

(Comment: ‘The relationship resulting from conceiving a child’)
(I~oles:

(mother
(ValucIsA: Woman)
(Number: 1))

(father
(ValueIsA: Man)
(Number: 1))

(child
(ValucIsA: Person)
(Number: (1,oO))))

(RoleValucMaps:
(ParentageSDl

(Comment: ‘The children of a Parentage are some of its father’s children’)
(Map: (child from: Parentage) G (father from: Parentage) (child from: Person)))

(ParentageSD2
(Comment: ‘The children of a Parentage are some of its mother’s children’)
(Map: (child from: Parentage) C (mother from: Parentage) (child from: Person)))

(ParentageSD3
(Comment: ‘The mother of a Parentage is each of its children’s mother’)
(Map: (mother from: Parentage) = Each (child from: Parentage) (mother from: Person)))

(ParentagcSD4
(Comment: ‘The father of a Parentage is each of its children’s father’)
(Map: (father from: Parentage) = Each (child from: Parentage) (father from: Person]

Figure 3. The “Parentage” generic concept

Figure 3, RvMs specify some of the relationships that must
hold among the father, mother, and children whenever a
child is conceived. To see how the system uses RVMs to add
descriptive information to individuals, consider a situation
where the user compiles t>he individuation of “Parentage”
shown in Figure 4. Further, assume that the individual
concepts “Sue,” “ Jack,” and “Joan” did not previously exist
in the network. The compiler wiI1 use the value restrictions
of the Parentage roles to determine that “Sue” must be an
individuation of Woman, “Jack” must be an individuation
of Man, and “.Joan” must be an individuation of Person. It
will then conclude from the first RVM that, “Joan” must be
one of the values of the “child” role of “Jack,” from the
second that “Joan” must be one of the values of the “child”
role of “Sue,” from the third that “Sue” must be the value
of the “mother” role of “Joan”, and from the fourth that
“.Jack” must be the value of the “father” role of “Joan.” The
resulting descriptions are shown in Figure 5.

Thus, KloneTalk is able t,o define new individual con-
cepts and supply a significant portion of their descriptions
using the information it obtains from the associat,ed generic

descriptions.

Conclusions

KloneTalk has been effectively used in several activities
at Xerox PARC, including designing the structure of data
bases (Tou, 1982) and developing conceptual frameworks
(Fikes 1981a).

Based on that experience, we can comment on some
of the strengths and weaknesses of the facilities described
in this note. The network index window needs to bc aug-
mented in some way to indicate the topological structure of
the inheritance network. It seems that a simple node link
graph would sufice, where the nodes denote concepts and
the links denote specialization relationships. The user could
then select nodes in this graph rather than na.mes on the
index lists.

Editing the concept descriptions as text has the usual
problems of producing unbound parentheses and other syn-
tax errors. A structure editor would be preferable. Although
the use of bold characters works well as a way of distinguish

THE AI MAGAZINE Fall 1982 31

A Rcprcscntation System User Intcrfacc for Knowlcdgc J3asc Designers

[ParentagcOfJoan (il: Parentage)
(Comment: ‘The relationship resulting from conceiving Joan’)
(Roles:

(mother (from: Parentage)
(Value: Sue)
(Number: 1))

(father (from: Parentage)
(Value: Jack)
(Number: 1))

(childJoan @ifs: child from: Parentage)
(Value: Joan))

(child
(ValueIsA: Person)
(Number: (Loo))))

(RoleValueMaps:
(ParentageSDl

(Comment: ‘The children of a Parentage are some of its father’s children’)
(Map: (child from: Parentage) C (father from: Parentage) (child from: Person)))

(ParentageSD2
(Comment: ‘The children of a Parentage are some of its mother’s children’)
(Map: (child from: Parentage) C (mother from: Parentage) (child from: Person)))

(ParentageSD3
(Comment: ‘The mother of a Parentage is each of its children’s mother’)
(Map: (mother from: Parentage) = Each (child from: Parentage) (mother from: Person)))

(ParentageSD4
(Comment: ‘The father of a Parentage is each of its children’s father’)
(Map: (father from: Parentage) = Each (child from: Parentage) (father from: Person]

Figure 4. An individuation of Parentage

ing local versus inherited information for the user, maintain-
ing that distinction during editing can be a nuisance. That
maintenance burden could be alleviated by a compiler that
was sophisticated enough to determine which parts of the
description differ from the inherited information and there-
fore need to be made local.

The “compile” operation that assigns a new descrip-
t,ion to an existing concept requires care in its design, par-
ticularly with respect, to how t,he changes affect other con-
cepts. For example, the description of a specialization of the
compiled concept or a constra.int in the description of any
other concept may refer to a role that no longer exists in the
newly compiled concept The current KloneTalk system as-
sures synt,actic consistency in the network by removing such
references to deleted structures, but does not provide any
other options to help wit,h such problems. What seems to
be needed is an interactive mechanism whereby the user is
notified of each suspected anomaly and given t,he opportunity
to specify what he wants done, perhaps as a selection among
a set of standard options.

The most successful of the interface facilities have been
those that allow a new concept, to be described by editing

the inherited description, that automatically define a concept,
or role when it is mentioned, and that, use the RVMs to
automatically fill in parts of a description More details on

KloneTalk can be found in (Fikcs, 1981b).

References

Brachman, R. et al KL-ONE Reference Manual, BBN Report No
3848, July 1978

Fikes, R A commitment-Based Framework for Describing Infor-
mal Cooperative Work Proceedings of the Third Annual Cow
ference of the Cognitive Sczence Soczety, Berkeley, Calif August,
1981 (t,o appear in t,he Cognztiwe Science Journal)

Fikes, R Highlights from KloncTalk: Display-Based Editing and
Browsing, Decompositiolq Qua Concepts, and Active Role
Value Maps Proceedangs of the Second Annual KL-ONE Workshop
October 1981

Ingalls, D H , The Snlalltalk-76 l’rogramming System Design
and Irnplerne~ltatio~1 Conference Record of the Fzfth Annual ACM
Symposium on Princzples of Programming Languages January
1978.

Tou, F N. et al RABBIT: An Intelligent, Dalabase Assistant
Proceedings of the AAAl 1982 Natzonal Conference on Artificial

Intelligence August 1982, pp 314 18

32 THE AI MAGAZINE Fall 1982

A Rcprcscntation System User Inlcrface for Knowlcdgc lk~c Designers 11

[Joan (a: Person)
(Roles:

(mother (from: Person)
(Value: SW)
(Number: 1))

(father (from: Person)
(Value: Jack)
(Number: 1))

(child (from: Person)
(ValueIsA: Person))

(sex (from: Person)
~$alueI~I~: liexType)

urn :

[J=;oE ManI . .
(mother (from: Person)

(ValueIsA: Woman)
(Number: 1))

(father (from: Person)
(ValueIsA: Man)
(Number: 1))

(sex (from: Person)
(Value: Male)
(Number: 1))

(child (from: Person)
(ValueIsA: Person)
(Number: (l,m)))

(childJoan (Difs: child from: Person)
(Value: Joan]

[SyRoI”,; Woman) .
(moiher (from: Person)

(ValueIsA: Woman)
(Number: 1))

(father (from: Person)
(ValueIsA: Man)
(Number: 1))

(sex (from: Person)
(Value: Female)
(Number: 1))

(chiid (from: I Person)
(ValueIsA: Person)
(Number: (1,m)))

(childJoan (Difs: child from: Person)
(Value: Joan))]

Explanation of Syntax

A differentiation of the “child” role, denoting
one of Jack’s children.

Figure 5. Descriptions of individuals implied by ParentageOfJoan

THE AI MAGAZINE Fall 1982 33

