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Abstract

The developmental approach, simulating a cognitive devel-
opment of a human, arises as a way to nurture a human-
level commonsense and overcome the limitations of data-
driven approaches. However, neither a virtual environment
nor an evaluation platform exists for the overall develop-
ment of core cognitive skills. We present the VECA(Virtual
Environment for Cognitive Assessment), which consists of
two main components: (i) a first benchmark to assess the
overall cognitive development of an AI agent, and (ii) a novel
toolkit to generate diverse and distinct cognitive tasks. VECA
benchmark virtually implements the cognitive scale of Bayley
Scales of Infant and Toddler Development-IV(Bayley-4), the
gold-standard developmental assessment for human infants
and toddlers. Our VECA toolkit provides a human toddler-
like embodied agent with various human-like perceptual fea-
tures crucial to human cognitive development, e.g., binocu-
lar vision, 3D-spatial audio, and tactile receptors. We com-
pare several modern RL algorithms on our VECA benchmark
and seek their limitations in modeling human-like cognitive
development. We further analyze the validity of the VECA
benchmark, as well as the effect of human-like sensory char-
acteristics on cognitive skills.

Introduction
Building a cognitive intelligent agent with human-like com-
monsense is a milestone of artificial intelligence (Zhu et al.
2020). Human cognition is an interpretable and sample-
efficient general intelligence, encompassing diverse abilities
like information processing, intuitive psychology, and goal
setting (Lake et al. 2017; Sloman 1999). These core cog-
nitive skills naturally construct in an early stage of human
development, often with limited experiences. Hence one of
the emerging paths towards such mental capabilities is to
mimic such cognitive development of a human, i.e., a devel-
opmental approach. (Doya and Taniguchi 2019; Silver et al.
2021) The goal of the developmental approach is to simu-
late a human’s neuro-cognitive developmental process and
enable continual life-long learning with active interactions.

However, the developmental approach currently lacks
both the assessment for cognitive development and the
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Figure 1: We present the VECA benchmark, a novel bench-
mark to assess the overall cognitive development of an AI
agent. Our VECA benchmark virtually implements the Bay-
ley Scales of Infant and Toddler Development-IV, a gold-
standard developmental test for early human infancy. VECA
benchmark is built upon our VECA toolkit, that can easily
develop diverse domains of cognitive tasks with controllable
difficulties. To bridge the perception and interaction gap of
human toddler and AI agent, VECA toolkit provides a hu-
man toddler-like multisensory embodied agent.

general environment to simulate the development. Several
benchmarks only target specific cognitive skills of an AI
agent, such as intuitive physics (Bakhtin et al. 2019) or in-
tuitive psychology (Shu et al. 2021). None of them cov-
ers the overall development of distinct cognitive skills like
object-relatedness, memory, and sensorimotor development.
Embodied agent simulators are the closest thing to mimic
human biological features, since they give realistic egocen-



tric perceptions or active interactions (Xia et al. 2018; Kolve
et al. 2017; Wu et al. 2018; Chen et al. 2020). Unfortunately,
they neither evaluate the general cognitive development nor
they focus on human-like sensory characteristics crucial to
cognitive development.

In this light, we propose the VECA (stands for Virtual
Environment for Cognitive Assessment), which consists
of two major components: (i) VECA benchmark, the first
benchmark to assess the general cognitive development of
virtual AI agents, and (ii) VECA toolkit, a novel task-
generating toolkit that can easily create diverse tasks evalu-
ating distinct cognitive capabilities, e.g., object understand-
ing, multimodal learning, or sensorimotor development. For
our VECA benchmark, we virtually implement the cognitive
scale of Bayley Scales of Infant and Toddler Development-
IV(Bayley-4), the gold-standard developmental assessment
for a human (Bayley 1999). Our VECA benchmark consists
of 81 tasks evaluating various cognitive functions, as demon-
strated in Figure 2. Under a standardized scenario, the tester
observes behavioral responses of an agent to determine the
mastery, emergence, or inability of a certain cognitive skill.
Since Bayley-4 is initially designed for a human infant and
toddler, a virtual agent of VECA should embody human-like
multimodal perceptions and interaction capabilities.

VECA toolkit provides a series of essential features to
simulate human cognitive development and virtualize the
Bayley-4 test: 1) human-like multimodal perceptions, 2)
comprehensive interaction capability with the environment,
3) extensibility for developing various custom-built tasks. to
model human sensory characteristics influential to cognitive
development, e.g., binocular vision, spatialized audio with
HRTF, and human-like tactile receptors. These features are
critical in human’s learning; humans learn by collecting rich
multimodal perception (e.g., vision, audio, tactile) from
their surroundings (Landau, Smith, and Jones 1998; Tacca
2011) and actively interacting (Franchak, van der Zalm,
and Adolph 2010; Vogt et al. 2018) with objects. We plan
to open-source both our VECA benchmark and toolkit on a
public repository.

We assess several representative RL algorithms with our
VECA benchmark, including policy gradient methods (Es-
peholt et al. 2018; Schulman et al. 2017; Haarnoja et al.
2018) and curiosity-driven learning (Burda et al. 2019), and
find that there is still a long way to go to reach the human-
level cognitive capabilities. Experimental results show that
goal-driven learning (IMPALA, the policy gradient method)
initially outperforms the unsupervised exploration without
explicit reward (curiosity-driven learning), but it prema-
turely converges and marginally improves from a random
policy. Furthermore, we demonstrate the validity of our
VECA benchmark by measuring the solvability and com-
plexity of its tasks. Our results show that all the tasks are
solvable, and their difficulties are well-distributed. We also
observe that the mastery of cognitive skill is much more dif-
ficult to acquire than the emergence of the skill. Ablation
study reveals that our VECA’s human-like sensory features
meaningfully affect the development of cognitive skills.

In summary, our key contributions are as follows:

• We develop the VECA benchmark, a first benchmark to
assess the overall development of core cognitive skills
of an AI agent. Our benchmark virtually implements
the Bayley-4, a standard developmental delay assessment
tool of a human.

• We introduce a novel VECA toolkit that can easily gener-
ate various tasks measuring diverse cognitive skills. Our
VECA toolkit supports human toddler-like agents with
rich human-like perception and interaction capabilities.

• Our work is first to provide diverse human biomemetic
sensory features on multimodal sensation, e.g., binocular
vision, HRTF-based spatialized audio, and human-like
tactile receptor.

• Using our VECA benchmark, We study the limitation of
several modern RL algorithms in simulating human-like
cognitive development. Moreover, we analyze the valid-
ity of VECA benchmark and VECA toolkit’s human-like
sensory characteristics.

Background & Related Works
In terms of human-like embodiment or cognitive develop-
ment assessment, our work is related to prior works on (1)
cognitive tests for AI agents, (2) cognitive developmental
robotics, and (3) embodied agent simulator.

Cognitive Test for AI Agents To verify the human-like
cognitive capability of AI, prior works introduced cognitive
tests for AI agents. For instance, TOMNet (Rabinowitz et al.
2018) applies the Sally-Anne test to an AI agent, a psycho-
logical test measuring a person’s socio-cognitive ability of
false belief (Wimmer and Perner 1983). Thorough bench-
marks exist for specific cognitive skills, e.g., physical rea-
soning and intuitive physics (Bakhtin et al. 2019), productive
and systematic generalization under uncertainty (Vedantam
et al. 2021), and intuitive psychology (Shu et al. 2021). In
contrast, our VECA benchmark assesses diverse core cog-
nitive functions which emerge in the early stage of human
development. To narrow the gap between the human test
and its virtual counterpart, we use a toddler avatar embod-
ied with a number of human-like features, unlike puzzle-
solving (Bakhtin et al. 2019) or dataset-based (Shu et al.
2021) benchmarks.

Cognitive Developmental Robotics Cognitive Develop-
mental Robotics physically embodies an agent to a human
baby-like robot to study how human’s higher cognitive func-
tions emerge through real-world interaction (Asada et al.
2009). Humanoid robot platforms in these works faithfully
mimic the human toddler’s body (Metta et al. 2010), e.g.,
joint flexibility, soft skin, and human-like appearance. How-
ever, robot platforms are cost-inefficient to train and test AI
algorithms; It is more cost-effective, scalable, and safe using
virtual environments and agents (Zhao, Queralta, and West-
erlund 2020). Furthermore, it is challenging to enable the
standard and repeatable testing procedures of Bayley-4 as-
sessment with existing robotics platforms.

Realistic Simulators for Embodied AI. Embodied AI re-
searchers hypothesize that intelligence emerges from inter-
acting with its surroundings, just like humans (Smith and



(a) # 2
Looks at Object.

(b) # 61 Understands
Concept of One.

(c) # 47
Blue Board 3 Pieces.

(d) # 29
Stirs Spoon.

Figure 2: Four example VECA benchmark tasks. VECA encompasses core cognitive functions which develop in early in-
fancy: For instance, (2a) visual attention and object recognition (Reynolds 2015), (2b) context understanding, cardinality, and
counting (Sarnecka and Wright 2013), (2c) problem-solving and concept of shape (Clements et al. 1999), (2d) memory (Rovee-
Collier and Hayne 1987) and cognitive imitation (Subiaul et al. 2004).

Gasser 2005). To verify it and faithfully simulate the real-
world entity, virtual agents embody egocentric sensory in-
puts as well as interaction capability with the environment.
Prior environments for embodied AI agents focus on photo-
realistic indoor simulation (Gibson 1988), vision-language
tasks (Wu et al. 2018), robot simulation with realistic robot
sensors and dynamics (Koenig and Howard 2004), audio-
visual multimodal learning (Chen et al. 2020), and prede-
fined object-specific interaction (Kolve et al. 2017). By con-
trast, our VECA provides unique features to model cognitive
development, which none of the existing environments of-
fers. In particular, VECA incorporates a suite of human-like
features such as tactile sensing, soft skin, HRTF spatialized
audio, and baby-like morphology, which are all essential to
implementing the Cognitive Scale of Bayley-4.

VECA Environment & Toolkit
Bayley-4 is a valid and reliable assessment tool for human
development (Bayley 1999), but our focus is an AI agent, not
a human. The question naturally arises: ”Is the Bayley-4 test
also valid for virtual AI agents?”. Bayley-4 consists of tasks
that are most meaningful with a human-like embodiment;
For instance, task (2a) needs binocular human eyes and a
toddler’s posture. General cognitive development is closely
related to biological factors (Ranjitkar et al. 2019), which
virtual AI agents do not acquire or develop. To substantiate
the virtualization of Bayley-4, the test subject agent should
embody human toddler-like biological features in both sen-
sory input and action capability.

VECA toolkit introduces a human-like multisensory em-
bodied agent and an immersive virtual environment, as
shown in the overview Figure 1. VECA agent receives
highly multimodal sensations simulating human characteris-
tics and does joint-level or animation-based actions. The im-
mersive VECA environment enables physical and animated
interactions with surrounding objects.

Human-like Multisensory Embodied Agent
A VECA agent embodies three major components: rich
human-like multimodal(multisensory) perception, human
toddler avatar, and joint-level physics. Inspired by re-

searches in human multisensory learning (Stein 2012;
Moustafa 1999), we provide four important sensory modali-
ties: vision, audio, tactile, and proprioception. Studies show
that multi-modal sensory experiences, mainly vision, au-
dio, tactile, and proprioception, facilitates early develop-
ment (Murphy 1997) and learning (Chandrasekaran 2017).
We further augment them with human biological character-
istics crucial for cognitive development, which is detailed in
Figure 3.

Human-like Vision. In imitation of human binocular vi-
sion, the VECA agent receives binocular vision input
through two eye pupils of the toddler avatar. Binocular vi-
sion plays a key role in a part of core cognitive abilities
and their development, e.g., depth and space perception (van
Hof, van der Kamp, and Savelsbergh 2006). Another impor-
tant trait of an infant’s vision system is biological develop-
ment, in which visual acuity (Dobson and Teller 1978) and
color sensitivity (Adams, Maurer, and Cashin 1990) steadily
grow in the first few months (Valenti 2006). We model such
deficient color vision and sharpness with multiple visual fil-
ters varying, e.g., focal length, grayscale, and blur. We allow
the parametrized manipulation of these features to simulate
a particular developmental stage of the vision system.

Human-like Audio. We introduce HRTF (head-related
transfer function) spatialization filter to facilitate blind-spot
recognition and audio source localization of a VECA agent.
Diffraction and reflection properties of human body struc-
tures like the head or torso greatly affect auditory pro-
cessing (Bögelein et al. 2018) and early auditory develop-
ment (Tollin 2009). The phase and impulse difference of
audio signal between two ears makes it possible (Potisk
2015). HRTF models such physical interaction between hu-
man anatomy and the sound source with a transfer function
of azimuth, elevation, and frequency. HRTF datasets collect
audio data from human subject’s ears varying source loca-
tions to model the input-output transfer curve. We use the
KEMAR dataset (Gardner 1994), which uses a dummy head
instead of a real person. Since the KEMAR dataset only sup-
ports discrete spherical coordinates, we apply bilinear inter-
polation as in (Sousa and Queiroz 2010) to enable arbitrary



coordinates. Post-processed audio data yi=L,R our VECA
agent perceives on its left(L) and right(R) ear is,

yi(t, di, θi, ϕi) = min{1/d2i , dTH}︸ ︷︷ ︸
Inverse Square Law

F (Ĥ(f(x(t)), θi, ϕi)︸ ︷︷ ︸
HRTF-based Magnitude Scaling

)

Ĥ(x, θ, ϕ) =

(
dθe − θ
θ − bθc

)T
H(x, θ, ϕ)

(
dϕe − ϕ
ϕ− bϕc

)
H(x, θ, ϕ) =

(
H(x, dθe, dϕe) H(x, dθe, bϕc)
H(x, bθc, dϕe) H(x, bθc, bϕc)

)
where x(t) the source audio data, i = {L,R} indicating the
left(L) or right(R) ear, di the distance of the sound source,
θi [◦] the azimuth, ϕi [◦] the polar angle, dTH a minimum
audible distance, H the KEMAR HRTF function, f the dis-
crete fourier transform, and F the inverse discrete fourier
transform. The function Ĥ is thus the composition of bilin-
ear interpolation and the discrete HRTF function H .

Figure 3: Human-like multimodal perceptions of VECA
toolkit’s embodied agent. Unlike existing embodied AI envi-
ronments, we provide the human toddler agents with various
human-like features, e.g., binocular vision, soft-skin based
tactile sensation, and HRTF-based spatialized audio.

Human-like Tactile. We simulate the human tactile sen-
sation by modeling a soft and flexible skin covering a tod-
dler avatar’s rigid-body bones. Tactile perception plays a
significant role in early cognitive development; toddlers un-
consciously learn cognitive skills through tactile interaction
like mouthing or grabbing. (Gibson 1988; Piaget and Cook
1952). Tactile perception is critical in sensorimotor devel-
opment (Dusing 2016), which consists a large portion of
the Bayley-4 test. Prior work naively simulates such tactile
sensation by measuring collision force on a single contact
point (Juliani et al. 2018). In contrast, we mimic four essen-
tial features of a biological tactile receptor: soft skin elas-
ticity (Wang et al. 2021), multiple contact points, sensory

threshold (Lawless and Heymann 1999), and sensory habitu-
ation (Song, Banks, and Bewick 2015). First, a tactile sensor
converts the elastic deformation of the local skin area above
it into a sensor signal. Inspired from Hooke’s law for elastic
body and prior works (El Bab et al. 2008; Ren et al. 2018),
the initial sensor value is proportional to the displacement of
the skin area. Second, we place multiple tactile sensors on
each triangle face of the agent’s mesh, which can simultane-
ously activate. Third, we cut off the sensory value with an
absolute threshold. Finally, we model the sensory habitua-
tion with exponential decay, following the study of (Thomp-
son and Spencer 1966). The tactile sensory input Ti(s, t) of
i-th sensor is thus formulated as follows:

Ti(s, t) = σδ( min{1, s/smax}︸ ︷︷ ︸
Soft-skin displacement

e−λt )︸ ︷︷ ︸
Habituation

where σδ(x) =

{
0, if x < δ

x, if x ≥ δ (Cutoff function)

s is the displacement of skin area around i-th sensor, t the
time (number of frames) passed from an initial stimulus,
smax the maximum displacement of skin area, λ the decay
rate, and δ the absolute threshold of sensory value.

Proprioception. To supply the kinesthetic senses like
limb position and movement, our VECA provides the raw
vector quantity of bones and joints, e.g., bone orientation,
current angle, and angular velocity of the joints. These pro-
prioceptive senses play a critical role in human motor and
sensorimotor development. However, their biological recep-
tors are noisy and difficult to simulate; these propriorecep-
tors rely heavily on the human musculoskeletal anatomy
since they are pressure sensors within muscles and joints.

Human Toddler Avatar. We model a humanoid agent
with a human toddler-like appearance and joint-level mo-
tion capability, as studies show that baby-like morphology
affects the human cognitive development (Dusing 2016) and
AI agent’s learning (Bambach et al. 2018). The physical
avatar has 47 bones with 82 degrees of freedom and human
joint-like angular constraints. Skin mesh overlays the bones,
and the mesh adaptively changes with the bone orientation to
model the soft skin. Accurate mesh collider and bone mod-
eling enable the agent to interact physically with the objects.

We also support an animation-based avatar and interac-
tion to trade-off task complexity with the physical plausi-
bility. For complex tasks, controlling an agent entirely with
the joint-level actions and physical interactions may be diffi-
cult. Stable primitive toddler-like actions (e.g., walk, rotate,
crawl) and object interactions (e.g., grab, open, step on) are
animated, similar to (Kolve et al. 2017).

Implementation Detail We use Unity3D game engine as
an environment simulator to support a 3D realistic scene
rendering and physics engine. VECA environment is a 3D
Euclidean space with Newtonian physics and a downward
gravitational force. VECA provides a series of features to
facilitate AI algorithm development: First, VECA supports
parallel execution of environment along with batched sam-
pling from a multi-task or multi-agent environment. Sec-
ond, to enable training on a remote server with abundant



Figure 4: Example case of virtualizing a Bayley-4 cognitive scale task into the VECA environment. This case virtually imple-
ments cognitive scale task #56, which assesses the spatial memory capacity.

resources, VECA can communicate information through the
socket network interface. Third, VECA includes an easy-to-
use python API resembling the OpenAI Gym interface that
can easily integrate with existing AI algorithms.

VECA task-generation toolkit is an extensive set of APIs
for creating cognitive tasks in a VECA environment. Using
the toolkit, we additionally generated a number of embodied
AI tasks for various cognitive skills: joint-level control, un-
derstanding the context of objects, multimodal learning, and
multi-agent RL. Further details of the VECA environment,
toolkit, usage of the toolkit, and generated task set are thor-
oughly described in the appendix (Park, Oh, and Lee 2021).

Virtualized Bayley-Scale Assesment
Bayley Scales Assessment The Bayley Scales of Infant
and Toddler Development (Bayley Scales Test) (Bayley
1999) is a gold standard (Carey et al. 2009) of development
assessment tool for a child aged 1 to 42 months. Its main
goal is to monitor the child’s developmental progress lon-
gitudinally or to identify a human child with developmental
delay. A structured series of developmental tasks constitutes
the Bayley Scales Test. The score is given per task when the
test subject makes a correct behavioral response in the task
scenario (Albers and Grieve 2007). The test’s standardized
administration and scoring procedures should not be vio-
lated to precisely compare the child’s performance. To claim
the validity and clinical utility of the test and its metrics,
large-scale standardization research is conducted on 1,700
typically developing children.

The latest edition of Bayley Scales Test (Bayley-4) (Ayl-
ward 2017) uses the five-scale framework: Cognitive, Lan-
guage, Motor, Social-Emotional, and Adaptive Behavior.
We use Cognitive scale in this work, since it focuses on the
development of cognitive processing aspects.

Cognitive Scale The Cognitive Scale of Bayley-4 consists
of 81 task items that measure diverse cognitive processing
aspects in early development, e.g., exploration and manipu-
lation, object relatedness, concept formation, memory, sen-
sorimotor development (Bayley 1999). We list several no-
table cognitive processes the scale examines.

• Information-processing tasks including novelty prefer-
ence, habituation, and anticipation of patterns, which cor-
relate with later cognitive functioning (Rose et al. 2012).

• Problem-solving, a higher-order information processing
that involves thinking or reasoning, memory, and synthe-
sis of information (Greiff et al. 2015).

• Play activities facilitating cognitive growth and symbol
understanding (Frost, Wortham, and Reifel 2000).

• One-to-one correspondence, counting, and cardinal-
ity (Geary et al. 2018).

Language development, one of the fundamental cognitive
abilities, is mainly measured on a separate Language Scale.
Note that the goal of the scale is not to quantify the entire
cognition or intelligence of a human subject; rather, it checks
whether core cognitive skills expected in a certain age have
actually emerged.



(a) Mean Episode Rewards (b) Total Raw Scores. (c) Age Equivalents. (d) Growth Scale Values.

Figure 5: VECA benchmark baselines results on a training steps of policy learners (IMPALA, CUR) (x-axis). Bayley-4 metrics
(5b), (5c), (5d) of policy learners are measured per 2 × 104 steps. We report human baseline results here for clarity: total raw
scores 130, age equivalent 33 months, GSV 529, and mean reward 1.7105.

Virtualizing the Bayley-4 Cognitive Scale
For a benchmark of general cognitive development, we vir-
tually implement the cognitive scale of Bayley-4 with our
VECA toolkit. We are permitted to adapt the Bayley-4 in
a virtual environment for research purposes. Figure 4 de-
scribes how we port a Bayley-4 task to the VECA environ-
ment. A Bayley-4 task contains three main components: task
& materials setup, item instructions, and scoring. We first
model the task environment and materials in a VECA en-
vironment; for example, we arrange prop materials or pre-
pare a caregiver’s audio clips. Next, we develop the item in-
structions as a scenario and produce it with materials and a
caregiver avatar. Finally, we design a reward structure that
returns a score depending on the agent’s behavior. Score 2
means a consistent proficiency of skill, whereas score 1 im-
plies that skill is inconsistent but emerging. Score 0 repre-
sents the absence of skill. Note that the correctness of behav-
ioral response is algorithmically determined, unlike the real-
world Bayley-4 test in which a human tester subjectively
determines its correctness. For instance, the task Looks at
Object in Figure 2a defines the ”looking” as the cosine sim-
ilarity of head and object direction > 0.95.

Metrics Bayley-4 provides several standardized metrics
for its sub-scales (Aylward 2017) that our VECA bench-
mark can leverage. The total raw score is simply a sum of
each task score, which converts to three standardized met-
rics: scaled scores, age equivalent, and growth scale values.
Scaled Scores uses the biological age of the participant to
normalize the raw score. Age Equivalent shows the devel-
opmental age of a normative human child equivalent to the
raw score. Growth Scale Values (GSV) are used to track the
child’s growth over time, and it has a mean and std value of
500 and 25. A score conversion table exists that maps the
total raw score to other metrics. We only use three metrics
from Bayley-4, except the scaled scores, since it is difficult
to decide the VECA agent’s exact biological age.

Experiments
We evaluate four aspects of our VECA benchmark toolkit.
First, we share the benchmark results of four representa-
tive baselines and show that using standardized metrics of
Bayley-4, the cognitive capability of AI can be directly com-
pared to the human. Second, we validate our virtualized

Bayley-4 tasks by analyzing the solvability and complexity
of each task, following the protocol of (Bakhtin et al. 2019).
Third, we show that VECA’s human-like sensory charac-
teristics meaningfully affect the development of cognitive
skills by training certain tasks where these features are cru-
cial. Finally, we demonstrate that our VECA toolkit can cre-
ate diverse cognitive tasks with different difficulties by vary-
ing the difficulty setup of our toolkit-generated tasks. We list
detailed experimental setups in the appendix (Park, Oh, and
Lee 2021).

Baselines. Four distinct types of baseline methods are
used for our experiments: (i) Policy Gradient, (ii) Curiosity-
driven Learning, (iii) Random Agent, and (iv) Human Base-
line. We use three modern policy gradient algorithms for
our evaluation: IMPALA (Espeholt et al. 2018) as a base-
line of our benchmark, and PPO (Schulman et al. 2017) and
SAC (Haarnoja et al. 2018) to assess the VECA toolkit it-
self. These methods represent goal-driven learning with ex-
plicit rewards. We first implemented parallelized PPO and
SAC that can train with our VECA environment. We also
revise the IMPALA implementation of (Küttler et al. 2019)
to support our VECA with diverse settings. For curiosity-
driven Learning (CUR), we used the dynamics-based cu-
riosity model of intrinsic reward (Pathak et al. 2017) revised
for our benchmark. CUR learns without any supervision; the
only reward signal is the intrinsic prediction error of obser-
vation input. It represents unsupervised exploration, which
aligns with how humans learn in the early stage of devel-
opment (Gibson 1988). Random agent samples actions from
the uniform distribution in 6-dimensional action space. No
training is thus held for this agent. Finally, to measure the
human baseline performance, three human adult participants
play our VECA benchmark and report their scores.

VECA Benchmark Baselines and Metrics. We compare
four baselines on our VECA benchmark. We train IMPALA
and CUR(policy learners) with the entire VECA tasks,
which are uniformly sampled at random per episode. Both
the CUR and IMPALA agents are trained for 1M steps. In
addition to Bayley-4 metrics, we measure the mean episode
reward over the previous 100 episodes.

Figure 5 shows that the policy learners train to surpass
the random agent over time, but it is way below the human
baseline, leaving plenty of room for reaching human-level



cognition. Policy learners achieve an age equivalent of 5
months and GSV value 477, which is a lower 17.88% of nor-
mative human baby data. It shows that these developmental
psychology-based metrics give a more intuitive understand-
ing of the developmental status, unlike RL metrics. Note that
the IMPALA achieves early improvement with faster con-
vergence, but the CUR constantly improves towards a higher
score. Such finding is in contrast with how humans learn; un-
supervised exploration dominates in the early development,
but it proceeds to goal-driven learning in the later stage.

(a) Probability (y-axis) of random agent scoring for each
VECA benchmark task(x-axis).

(b) Percentage (y-axis) of VECA tasks scored by random
agent as a function of number of attempts (x-axis).

Figure 6: Analysis of complexity and solvability of VECA
benchmark. All the tasks are solvable, but it gets more diffi-
cult for a task with higher index. Score 2 (Mastery) is much
harder to achieve than Score 1 (Emerging).

Validity Analysis. We evaluate the validity our VECA
benchmark in two folds: (i) solvability and the complexity
of each task, (ii) the complexity of the overall VECA bench-
mark. We use a random agent to analyze the task complexity,
e.g., a solution probability of random agent or the number of
random trials to solve a portion of tasks.

Figure (6a) shows that all the VECA benchmark tasks are
solvable with well-distributed task complexity. Tasks with a
higher template index tend to be more difficult, which aligns
with how the original Bayley-4 tasks are organized. A clear
percentage gap of score-1 curve and score-2 curve in Fig-
ure (6b) implies that score-2 of VECA benchmark, a mastery
of a certain cognitive skill, is much more difficult to achieve
than the emergence of the skill. Furthermore, the random
agent fails to solve 100% of tasks even after a large number
of trials, suggesting that completely solving our benchmark
is a highly challenging goal.

Effect of Human-like Perception. We now study the ef-
fect of human-like sensory features on cognitive tasks. We

(a) Auditory Features,
Kicks Squeaky Ball task.

(b) Tactile Sensation,
Grabs Block task.

Figure 7: Learning curve of mean task score varying the au-
dio (7a) and tactile (7b) setup. Human-like sensory features
noticeably affect the learning of the relevant cognitive task.

use the Kicks Squeaky Ball task for auditory perception,
which should 3D-localize the transient and dynamic sound
source. For tactile perception, we use the Grabs Block task,
a sensorimotor task that should physically grab a large block
with both hands and lift it. PPO is used for the agent training.

Noticeable performance gap of learning curves in Figure 7
shows that VECA’s human-like sensory features are cru-
cial in the development of cognitive skills. The agent with
HRTF-spatialized audio attains much higher performance
faster than the agents without them. Like a human, audio
spatialization due to physical body structure appears to be
crucial in the sound source localization of a VECA agent.
The same applies to the VECA’s tactile sensation; tactile
sensation seems to plays an essential role in the sensorimo-
tor development of a VECA agent.

Usefulness of VECA Toolkit. To show that our VECA
toolkit covers a diverse domain of tasks with variable diffi-
culty, we pick several representative toolkit-generated tasks
assessing distinct cognitive skills, and train VECA agents on
them with PPO and SAC. Diverse tasks and their domains
that we evaluate include GrabObject for joint-level control,
ObjectNav for navigation and visual recognition, KickThe-
Ball for multimodal learning, and MultiAgentNav for multi-
agent RL. Results show that these tasks are trainable, and
the user can easily diversify the task difficulty. Due to space,
we illustrate the result plot in the appendix (Park, Oh, and
Lee 2021).

Conclusion & Future Works
We introduced a new VECA toolkit that can generate diverse
and distinct cognitive tasks for a human-like agent. Using
our toolkit, we developed a novel VECA benchmark that
measures the overall cognitive development of an AI agent
for the first time. Our evaluation with the VECA benchmark
revealed that current RL algorithms need a significant im-
provement to acquire general cognitive skills like a human.

In future works, we plan to extend our benchmark to the
different Language and Motor Scales of Bayley-4, and test
cognitive models beyond RL agents, e.g., NLP models, plan-
ning, and cognitive architectures. To evaluate the fidelity of
our VECA toddler agent to the real human toddler, we also
plan to motion-capture a human toddler’s movement and
compare it with the motion dynamics of our VECA agent.
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Hautamäki, J.; and Bornstein, M. H. 2015. A longitudinal
study of higher-order thinking skills: working memory and
fluid reasoning in childhood enhance complex problem solv-
ing in adolescence. Frontiers in psychology, 6: 1060.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290.
Juliani, A.; Berges, V.-P.; Vckay, E.; Gao, Y.; Henry, H.;
Mattar, M.; and Lange, D. 2018. Unity: A general platform
for intelligent agents. arXiv preprint arXiv:1809.02627.
Koenig, N.; and Howard, A. 2004. Design and use
paradigms for gazebo, an open-source multi-robot simulator.
In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
volume 3, 2149–2154. IEEE.
Kolve, E.; Mottaghi, R.; Han, W.; VanderBilt, E.; Weihs, L.;
Herrasti, A.; Gordon, D.; Zhu, Y.; Gupta, A.; and Farhadi,
A. 2017. Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474.
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