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Abstract

One of the inherent limitations of current AI systems, stemming from the passive
learning mechanisms (e.g., supervised learning), is that they perform well on
labeled datasets but cannot deduce knowledge on their own. To tackle this problem,
we derive inspiration from a highly intentional learning system via action: the
toddler. Inspired by the toddler’s learning procedure, we design an interactive
agent that can learn and store task-agnostic visual representation while exploring
and interacting with objects in the virtual environment. Experimental results show
that such obtained representation was expandable to various vision tasks such as
image classification, object localization, and distance estimation tasks. In specific,
the proposed model achieved 100%, 75.1% accuracy and 1.62% relative error,
respectively, which is noticeably better than autoencoder-based model (99.7%,
66.1%, 1.95%), and also comparable with those of supervised models (100%,
87.3%, 0.71%).

1 Introduction

Although recent deep learning methods are showing an overwhelming performance in the computer
vision domain [1], there are major limitations of these data-driven learning: (i) a well-distributed
large labeled dataset is needed to learn a feature properly [2], (ii) they are task-specific in the sense
that adapting to multiple different tasks or transfer learning is difficult [3].

Several learning frameworks are suggested to overcome each limitation, but none of them are fit to
solve both of them due to their drawbacks. Semi-supervised learning trains the model using both the
labeled data and extra unlabeled data to reduce the labeling cost. However, it increases the sample
complexity only by a constant factor compared to supervised learning without strong assumptions
on unlabeled data [4]. Meta-learning trains in a set of well-known tasks and leverage the acquired
knowledge in learning a similar task. Still, there should be a sufficient number of well-labeled prior
tasks that are much similar to the target task [5]. Multi-task learning effectively adapts to a set of
related tasks simultaneously by forming an inductive bias from intrinsic dependencies of tasks, but it
is challenging to optimize shared parameters in each task’s competing objectives [6].

These challenges stem from the difference in how human and data-driven AI models the learning
process [3]. Data-driven AI takes a statistical pattern recognition-based approach, so the knowledge
accumulation relies on the observed data. In contrast, humans actively inspect the environment to
collect data and learn with only a few of them by building a generalized world model. Thus, a solution
could be to integrate the learning process of human into AI techniques.
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ML researchers are recently taking an interest in learning of a child to seek technical advances [7, 8, 9].
Learning properly in a child stage is crucial for learning-to-learn capabilities like goal-setting, self-
control [10]. Life experiences and prior knowledge learned in childhood are known to influence the
learning of a grown-up. The latest works in deep learning like visual object learning [7] are seeking
advance from how children learn. By understanding how the child learns, we can understand how
learning-to-learn capabilities and task-agnostic knowledge of objects are nurtured.

In this work, we propose a new learning framework to deal with the challenges, inspired by a highly
intentional learning system via action: the toddler. Toddlers unconsciously learn through interaction
and play with their surrounding environment, rather than self-directed task-specific learning of an
adult [11]. Large-scale studies suggest that general understandings of objects develop in an early
stage of the toddler without any supervision, through interaction on objects like mouthing, chewing,
and rotating [12, 13]. Furthermore, teaching formal subjects too early for a child is counterproductive
in the long run [14], and children learn cognitive or self-regulatory abilities through playing [13, 10].
These studies motivated us to organize unsupervised or weakly-supervised learning through play in
an interactive and playful environment to simulate how toddlers learn.

We formulate a toddler-inspired learning framework and simulate the exploration and interaction-
based learning in an interactive environment. In particular, we first designed a virtual environment
where the agent can freely roam and interact with objects and gets feedback (reward). Second, we
designed the agent’s network architecture to extract the visual knowledge of objects to the embedding
called interaction feature maps. Interaction feature maps are designed to have only one feature
image per interaction to make the agent learn a compact interaction-based representation. Finally, we
transferred the visual knowledge to downstream computer vision tasks by using the interaction feature
map as prior. Learning downstream tasks with the interaction feature map were able to achieve 99.7%,
62.8% accuracy, and 3.0% relative error in image classification, object localization task, and distance
estimation, which is 0.3%, 16.9%, 13.6% better than the autoencoder-based unsupervised transfer
learning. Moreover, the number of images to develop the embedding prior was notably smaller than
the unsupervised counterpart. It shows that the toddler-inspired learning framework can efficiently
gain a transferrable knowledge of objects with active interaction-based data collection.

2 Methods

Interactive Virtual Environment. Motivated by [12], we designed an environment supporting the
human-like visual observation and active physical interaction with the object, to train the visual
knowledge prior without any explicit labels. We used VECA [15], a virtual environment generation
toolkit for human-like agents, to implement the environment. The environment’s reward structure
provides a sparse positive reward signal when the agent is touching or playing with the prop objects,
and provides a near-zero negative reward to aid the navigation to the prop object. This reward
structure motivates the agent to visually locate distant objects while freely exploring and observing
objects in depth when it is nearby. The agent collects data without any label and establishes a more
profound visual understanding of an object compared to the unsupervised learning on object images
without any context.

Toddler-inspired learning. With the interactive environment, we formulate the toddler-inspired
learning framework, which aims to acquire a general understanding of objects without any supervision,
but by exploring the environment and interacting with the objects, as a toddler does. We assume
that the agent can only visually observe and interact with the object during the sparsely rewarded
reinforcement learning task. With the reinforcement learning, we want the agent to learn a transferable
representation embedding fθ(x) parameterized by θ through sufficient observation and interaction,
without any supervision of the downstream tasks. The representation mapping fθ(x) will be a general
prior for supervised downstream tasks T = {Ti}i=1,··· ,n with datasets DT = {DTi

} collected from
the environment.

The framework consists of two phases. First, the transferable representation fθ is pretrained in an
interactable environment, by solving a reinforcement learning problem in Eq. 1. ot, at represents
observation, action in time t, while r(·), πψ(·|·) and γ are reward function, policy and discount factor,
respectively. Second, we use the representation mapping fθ(x) as an embedding prior and transfer to
the downstream tasks T. We evaluate the generality of representation with its transferability, which
results in maximizing the sum of each objective shown in Eq. 2. and {JTi

} denotes the set of the
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Figure 1: Overview of toddler-inspired learning framework and network architecture.

objective function for each task {Ti}. Please note that we cannot directly optimize the formula since
the task distribution is unknown while training.

θ̂, ψ̂ = argmax
θ,ψ

Jtrain(fθ, πψ) = argmax
θ,ψ

∞∑
t=0

γtr(st, πψ(at|fθ(ot))) (1)

to indirectly maximize Jtest(z) =
∑
Ti∈T

∑
(x,y)∈DTi

JTi
(fθ̂(x), y) (2)

The Fig. 1. shows the overview of the procedure in our toddler-inspired learning framework. In
the first phase, the agent trains under the reinforcement learning framework and learns the efficient
transferable representation, which we named as interaction feature maps, through exploring the
environment and interacting with the object. In the second phase, the representation embedding
becomes a feature extractor of the data points on downstream tasks. In this figure, the representation
embedding’s generality is evaluated with the transferability to three vision tasks: image classification,
distance estimation, and object localization.

Network Architecture. To learn and store transferable knowledge, we designed the architecture
of the agent as Fig. 1. Visual observation of the agent is encoded with CNN and MLP, resulting
in interaction feature maps. Those feature maps are masked with linearly embedded intention and
determine the action of the agent. Since the agent’s movement only depends on masked features, the
agent must learn to represent abstract features of the object corresponding to its interaction.

3 Experiments

3.1 Experimental Setup

To show that the agent could acquire transferable knowledge through the toddler-inspired learning
framework, we evaluated the interaction feature map’s transfer performance on three supervised
visual downstream tasks: image classification, distance estimation, and object localization. In specific,
we fixed the parameters of the interaction feature map fθ after pretraining and connected linear layers
for transfer learning. We used VECA [15] toolkit to implement an interactive 3D environment that
includes three prop objects (toy pyramid, ball, doll) and a baby agent. The agent receives RGB 84x84
binocular vision and has two kinds of action - movement and interaction(hold, kick, press). The
reward signal differs for each object-interaction pair. It could be positive (If the baby presses the
doll, then the doll will make sound and the baby will be joyful) or negative (If the baby kicks the toy
pyramid, then the baby will feel pain).

Baselines. Since the performance of the agent is related to its architecture, we compare the perfor-
mance of the agent to baseline agents with the same architecture but different training methods:
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Figure 2: Learning curve of transfer learning. For classification and recognition, higher is better. For
distance estimation, lower is better. Best viewed in color.

• Random: Randomly initialize the agent’s network parameters and only train the connected layer. It
shows the naive performance from the architecture.
• Autoencoder: The agent’s network is trained as an autoencoder. We use the performance as a

baseline of representation learning without explicitly labeled data.
• Supervised: Both agent’s network and the connected network are trained supervised (without

transferring) for a specific downstream task. We interpret its performance as an optimal achievable
performance with this architecture.

3.2 Results and Discussion

Task (Metric, %) Random Autoencoder Proposed Supervised
Classification (Accuracy) 90.0±2.9 99.7±0.0 100±0 100±0

Distance estimation (L1 error) 4.01±0.61 1.95±0.08 1.62±0.02 0.71±0.01
Recognition (IOU) 55.2±1.2 66.1±0.5 75.1±1.4 87.3±0.8

Table 1: Numerical transfer performance with standard errors. For classification and recognition,
higher is better. For distance estimation, lower is better.

As shown in Table 1 and Fig. 2, the transferred models achieved better performance than random and
autoencoder models, while being also comparable to supervised models. In specific, the proposed
model was able to achieve relative improvement of 0.3%, 16.9%, 13.6% for classification, distance
estimation, recognition, from autoencoder models. It shows that the agent was able to learn task-
agnostic knowledge from the environment without any explicit labels.

Why would the agent learn those features? For the classification and recognition, we suppose that it
is because the agent must recognize and classify the objects to achieve maximal reward, while action
of the agent is dependent on the transferred feature. For the distance estimation, we suppose that
this ability comes from the training of the critic (value function). Since the critic has to predict the
cumulative reward, the agent would learn how much time will be required to reach the object, thus
roughly estimate the distance to the object.

4 Conclusion & Future Works

Inspired by how toddlers learn, we proposed a toddler-inspired learning framework to gain transferable
visual knowledge of objects by exploring and interacting with the environment. We evaluated its
transfer performance to several supervised downstream visionary tasks. Evaluation results show
that the agent could gain a transferable knowledge of objects by exploring and interacting with the
environment.

However, our method is still far from how a toddler learns. We used hand-crafted reward and applied
a conventional reinforcement learning algorithm to train the agent. We suggest that substituting
hand-crafted reward for intrinsic reward and developing a human-like fast and adaptive learning
algorithm would be a promising future direction.
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5 Technical appendix

5.1 Detailed description of training process

At the start of the each episode, the agent has an intention to do certain interaction (e.g. in this
episode, the baby wants to kick something). At the initial point, the agent randomly explores and
interacts with the objects, receiving both positive and negative rewards. During the training process,
the agent learns to find the object matching its intention to maximize the reward.

5.2 Dataset

We collected 2400 binocular RGB image data by randomly rotating and positioning the objects used
in the environment. For all experiments, we split the data into 2100/300 images and used them for
training/testing.
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5.3 Technical details

Architecture. We used the CNN architecture introduced in [16], and connected two layers to make
512-dimensional interaction feature maps. Those features are transfered with single linear layer.

Image classification. Like casual image classification tasks, the agent has to classify images by its
included object. We used cross-entropy loss with softmax activation to train the model.

Distance estimation. The agent has to estimate the distance between the camera and the object. The
distance is log-normalized to have zero mean and unit variance. We used mean squared error loss to
train the model.

Object localization. The agent has to localize the object with a bounding box. Coordinate of vertices
of bounding box is within the range of (0, 1). We designed the network to output four values: output
center coordinate, width and height of the bounding box.

Training. While training in the virtual environment, we used Adam[17] optimizer with learning rate
of 0.00025 and trained the agent using SAC algorithm[18] for 3.2M frames. For transferring the
agent, we used the same optimizer with learning rate of 0.001 and trained the agent for 50 epochs.
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