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ABSTRACT

Deep learning (DL) computation offloading is commonly adopted to
enable the use of computation-intensive DL techniques on resource-
constrained devices. However, sending private user data to an ex-
ternal server raises a serious privacy concern. In this paper, we
introduce a privacy-invading input reconstruction method which
utilizes intermediate data of the DL computation pipeline. In doing
so, we first define a Peak Signal-to-Noise Ratio (PSNR)-based met-
ric for assessing input reconstruction quality. Then, we simulate
a privacy attack on diverse DL models to find out the relation-
ship between DL model structures and performance of privacy
attacks. Finally, we provide several insights on DL model structure
design to prevent reconstruction-based privacy attacks: using skip-
connection, making model deeper, including various DL operations
such as inception module.
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1 INTRODUCTION

With advances in smartphone and wearable device technologies,
plenty of sensor-enabled life-immersive applications are emerging,
providing proactive and situational services to their users. Many of
them adopt deep learning (DL) techniques to monitor user activities,
emotions, and surroundings in an accurate manner. However, the
computational complexity of DL model-based inference makes it
difficult to apply such techniques on resource-constrained devices.
Although on-device optimization techniques could be useful to
address such problems, it is inevitable to offload computation in
many cases, especially if the devices have highly limited computing
power or run computation-intensive models.
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DL offloading, however, raises serious privacy concerns as pri-
vate user data (e.g. images, sound motion data, physiological signals)
are sent to the external server [4]. One possible solution to protect
private data is to encrypt or anonymize the data before transmit-
ting it to a cloud computing service [28]. However, such methods
often require removal of detailed features or perturbation of the
data, affecting the accuracy of DL inference. Another promising
approach is sending intermediate feature values (not the raw input
data), which cannot easily be converted back to the original data.

In this paper, we explore a possible privacy attack called recon-
struction attack in DL offloading, with which an adversary can
rebuild the original data (e.g. private pictures) from the intercepted
intermediate feature data. The key idea of our attack is to lever-
age the concept of a gradient descent to find the image producing
the same intermediate feature data as the original user image. Our
method feeds a random variable into the DL model and extracts
intermediate data from the same layer from which the intercepted
intermediate data is extracted. With the loss function computed
using the two intermediate data, we optimize the variable with
gradient descent by backpropagating through the DL model.

Our study shows that the suggested attack can reconstruct im-
ages from intermediate outputs (generated after multiple DL layers)
for ten different state-of-the-art DL models. The reconstruction at-
tack is possible even with the intermediate feature values processed
through more than 80% of the layers for VGG networks and Mo-
bileNet. Also, such an attack can be efficient: with a single Tesla K80
GPU, an adversary can, on average, reconstruct the original data in
7.7 seconds per extracted data. This suggests that an adversary can
quickly rebuild a large number of images.

Based on the results, we provide some insights for building
privacy-preserving models suitable for (partial) DL offloading. For
instance, we found that incorporating skip-connections into the
model structure makes the DL model significantly resistant to im-
age reconstruction (after the first couple of layers, which can be
handled by the client devices).

The contribution of our paper is as follows:

e We introduce a new type of privacy attack in DL offloading,

i.e. reconstruction attack, which rebuilds the raw user image
from the intermediate data of DL pipeline transferred from
the user device.

e We propose a new image reconstruction method, which
rebuilds original input images from intermediate feature
values of DL computation. Image reconstruction is possible
on arbitrary DL models, taking about 7.7 seconds per image
with a single Tesla K80 GPU.

We show that our image reconstruction method can suc-
cessfully regenerate input images from very deep layers of
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various models (e.g., VGG Network, MobileNet) and discuss
useful insights to design privacy-preserving DL models and
offloading mechanisms.

2 IMAGE RECONSTRUCTION ATTACK

In common DL offloading scenarios, a user either sends raw data to
the server or executes the front part of DL pipeline (i.e. user-side
model) first and then sends the intermediate feature data to the
server. The server runs the full or the later part of the DL pipeline
(i.e. the server-side model) and sends the inference output to the
user device.

In this offloading process, reconstruction attack can be a serious
privacy threat. Our attack method, for instance, can intercept and
use the intermediate feature data and the user-side model data in
some scenarios. Firstly, the intermediate features can be intercepted
through the Man-in-the-Middle attack in the network, from mali-
cious applications, or by the administrator of the server. Also, an
adversary can fetch the model as DL-based services typically use
DL models open to the public. In the case that custom DL models
are used, an adversary can hack into a vulnerable client device
and extract the user-side model data. The user-side model data are
often identical across all the client devices, and model protection
measures are harder to apply to the user-side model due to the
performance issues of the device.

3 RECONSTRUCTION METHOD

There are several possible approaches to reconstruct the original in-
put image when an adversary has access to the intermediate feature
data of the DL pipeline. One straightforward method is creating an
inverse mapping from the model structure and the corresponding
parameters. However, common DL layer operations like max pool-
ing, fully connected, and convolution are not reversible. Another
approach is using a generative neural network to approximate an in-
verse mapping. However, this approach needs a large set of training
data to map the inputs to the intermediate outputs accurately.

We developed an iteration-based reconstruction method for the
attack (as shown in Figure 1). The main idea is to optimize an input
variable through backpropagation on the DL model to create an
image similar to the original image. First, the method creates a
random input variable and feed it into the model and extract inter-
mediate data from the same layer the intercepted intermediate data
is fetched. Then it evaluates loss function between created interme-
diate data and intercepted intermediate data, and backpropagate to
update the input variable. Iteration of this process makes the input
variable similar to the original input image.

The iteration-based reconstruction method consists of a loss
network and an image variable. The loss network is the neural
network which an intermediate data are calculated. The input image
is generated on an image variable through backpropagation.

Suppose we have an original intermediate data of DL pipeline
from a user input. Let early part of the DL pipeline from the input
to [-th layer as mapping f ! an image variable x, the original im-
age X. Our method feeds the image variable x into the DL model
and extracts the intermediate data f I(x) from the same layer the
original intermediate data f!(%) is created. Then, it computes the
reconstruction loss L, which is defined as L2 loss between the two
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Figure 1: Representation of image reconstruction process. It
shows reconstruction loss of i-th layer of original image and
generated image.

intermediate data. L is precisely defined as follows.

Lg = ) (') - f1 &)

leL

Let the total variation loss of the image variable as Lty. x; j is
(i,j)-th pixel value of x.

2 2
Ly = Z((xi,j = Xiv1,j)" + (xij = xij+1)7)

iJj
The objective function is the lagrange multiplier of two Lr and
Lty [24]. Now the problem becomes optimizing the image variable
x* as to minimize the objective function to obtain the original
image.

x* = argmin, (LR + ALTy)

We can obtain the image variable through backpropagation if we
know the model structure and parameters of f* mapping.

4 EVALUATION

4.1 Experimental Setup

Models. We have simulated the privacy attack in diverse DL mod-
els including various DL components like convolution, pooling,
residual layer, skip-connection, depth-wise convolution, and incep-
tion module. Target models of our attack simulation are VGG16 and
VGG19 [27], ResNet50 [12], InceptionV3 [30], InceptionResNetV2
[29], Xception [5], MobileNet [14], MobileNetv2 [25], DenseNet121
[15], and NASNetMobile [33], which are provided from Keras, pre-
trained with the ImageNet dataset [8].

Input Data. We have used 20 images in our experiment, 10 of
them chosen from the result of random keyword-based Google
image search, and rest, from the ImageNet dataset.

Default Hyperparameter Setting. We have chosen the follow-
ing default values for the initial hyperparameter settings: learning
rate 5 X 10!, lambda of objective function 1 X 1073, number of
iterations 500, and the optimizer, Adam [16].

Metric. We define and use a new metric based on PSNR [13]
to evaluate the quality of the image reconstruction. Our metric
modifies PSNR to represent the difference between two images
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Figure 2: Relation of image difference and indistinguisha-
bility from DL models, represented by top-k accuracy,(a)(b)
number of ORB feature matching between original input im-
age and rebuilt image.(c)

and satisfy distance properties such as non-negativity, symmetry,
triangle inequality. Specifically, the metric for the two images, x
and x, is denoted as D(x, x). The smaller D(x, x) is, the more similar
the two images are. D(x, %) is defined as the following:
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Original
Figure 3: Reconstruction of 4 input images from intermedi-

ate features of VGG19 Loss network. Rebuilt images sorted
by image difference, rounded on the first decimal place.

241,

) 1 .
D(x,%) = log(HWC Z |xi,j,c = Xi,j.c

LJ,c

where H, W, C are the height, width, and the number of channels
of the image and the pixel values of x, X ranges from 0 to 255. The
two image are completely identical if D(x, x) is zero. Dy 441, is the
mean value of the image differences among a set of images.

We adopt the above new similarity metric instead of using com-
monly used metrics like SIFT [18], Oriented Fast and rotated BRIEF
(ORB) [23], Color histogram [22]. This is mainly because our im-
age reconstruction method aims to recreate pixel-by-pixel similar
images, so the metric based on pixel-wise difference is more valid.
Also, images reconstructed from our method typically contain a
lot of noises, so SIFT or ORB-based image similarity metrics does
not work well. Our metric is conceptually similar to PSNR, but the
direct use of PSNR is not suitable as it simply represents the signal
to noise ratio for a single image, not the similarity between the two
images.

Validity of our metric. We have validated our metric with
two experiments. We compare inference results of original and
reconstructed images on various DL models. We set the prediction
result from the original image as ground truth to get top-k accuracy
of the reconstructed image. We also compute the number of ORB
feature matches between the original and the reconstructed images.

There is a strong negative correlation between image difference
and indistinguishability from DL models. Figure 2a-2b show that
the rebuilt image and the original image are likely to be indistin-
guishable to neural networks when the image difference is low.

Image difference is shown to have a strong negative correlation
with the number of ORB feature matches. Figure 2c shows that the
reconstructed image tends to preserve the features of the original
image when the image difference is low.

Figure 3 shows the relationship between the image difference
metric and the perceptual difference. If the image difference is lower
than 2, then it is almost indistinguishable from the original image.
If the metric is higher than 4, the original image seems to be not
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Figure 4: Relation between layer depth and Dy ;; .} from im-
age reconstruction at the layer, on 10 distinct DL models. X
axis is layer depth of certain layer operation divided by max-
imum layer depth of DL model. Image difference tend to in-
crease as layer gets deeper on all the models.

reconstructed at all. Overall, as the image difference gets higher, it
gets harder to think the two images as similar. We can think of 4 as
a possible threshold of image reconstruction.

4.2 Reconstructability for Various Models

We have experimented image reconstruction on diverse DL models
and found out that image reconstruction was possible on a very deep
layer of some models. Layers with Dy, ,;.p over 4 is not recorded,
according to the experiments on our metric.

Figure 4 shows the relationship between layer depth and Dy, cp,
on 10 distinct target networks. Layer depth represents an approx-
imate depth of a DL operation on the network. Layer depth gets
deeper on a group of DL operations like convolution cell, pooling,
inception module, residual block, and reduction block. Maximum
layer depth of a DL model is a maximum of layer depth value of all
the DL operations on the model. If a single layer depth has several
DL operations to extract the intermediate data, then the smallest
Dy aten from them is chosen to represent the layer depth.

Quality of the reconstructed image tends to decrease as the
intermediate data is extracted from deeper layers. All the graphs
in Figure 4 show that the image difference tends to increase as
intermediate data is extracted from the deeper layer.

Table 1 shows that reconstruction-based privacy attack is pos-
sible on 85 ~ 87.5% of the layers of VGG networks. VGG network
structure is simply designed, mainly with the sequential arrange-
ment of convolution and pooling layer operations. Therefore it is
not optimized to extract only necessary features for inference, and
lots of information on original image persists through deep layers.

Reconstruction attack does not work well even in shallow layers
of the DL models with skip-connection. Image reconstruction is
possible only on 2 ~ 15% of these models. ResNet adds output from
previous residual block to current residual block output to pass it
on to the next block. DenseNet concatenates outputs from all the
previous cells with current cell output to pass it on.
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Model Percent
VGG19 87.5%
VGG16 85%
MobileNet 82.1%
Xception 57.1%
MobileNetV2 48.1%
InceptionV3 45.5%
NASNetMobile 33.3%
InceptionResNetV2  27.3%
DenseNet121 15.0%
ResNet50 2%

Table 1: Percentage of portion of DL model where image re-
construction is possible. Sorted by percentage.

In case of the inception module-based DL models, reconstruction
attack is possible on a smaller portion of the network than VGG
networks. The attack works only on 27.3 ~ 57.1% of inception
module-based models. InceptionResNetv2 is a combination of resid-
ual connection and inception module, and image reconstruction is
possible on less than 30% of the entire model structure. Xception
is inception module-based network without skip-connection, and
attack is possible on the largest proportion among them.

Reconstruction attack performs differently on various DL models
optimized for resource-restricted devices. On MobileNet, which
has the simplest structure of stacking sequence of 3x3 depthwise-
separable convolution and 1x1 convolution, the attack is possible
on 82.1% of the entire model. MobileNetV2 and NASNetMobile,
with more complex cell structure including skip-connection, are
more robust to the attack than MobileNet.

4.3 Effect of Hyperparameters

From this experiment, we observe the effect of hyperparameters
on latency and output quality of the image reconstruction process.
Hyperparameters of interest are the type of optimizer, learning
rate, number of iteration, and lambda of the objective function. The
experiment is done on an Ubuntu Linux instance with a single Tesla
K80 GPU.

We can rebuild an original image from a single intermediate data
in 7.7 seconds with a single Tesla K80 GPU when hyperparameters
are set to values described below. Results in Table 2 shows that it
is optimal when the learning rate is 5 X 10!, and when the lambda
is 1 x 1073, Higher iterations monotonically showed lower image
difference, but the execution time increased proportionally to the
number of iterations. Dy, ,;.p increased marginally after 500 itera-
tions, so we chose the number of iterations as 500. In the case of
optimizer Adam and L-BFGS [17] showed similar Dy ;;.j, values,
but L-BFGS takes twice the execution time on the same number of
iterations.

5 INSIGHTS FOR PRIVACY-PRESERVING
MODELS

We provide insights to design DL model structure which is difficult
to privacy attack. To counter reconstruction-based privacy attack
on DL computation offloading system, we suggest reorganizing the
user-side DL model structure to be resistant to attack. We below
describe a few possible design guidelines for the model design.
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Learning rate  Dpgcp

Optimizer Time(s) Dpgsch 1x 10 4.585
5% 10? 4.181

Adam 7.818 3.207 1 % 102 2024
L-BFGS 17.784 3.171 5 % 101 2.762
RMSprop 8.533 3.633 1% 10! 2.819
SGD 8.365 3.771 1% 10° 3.278

Adagrad  8.329 3.458 1 '

1X10 3.839

(a) Optimizer 1x1072 3.980

(b) Learning rate

Iterations Time(sec) Dpgsch
100 1.558 3.470
200 3.081 3.357 lambda  Dparch
300 4.614 3.282 1x1071  3.395
400 6.153 3.240 1x1072  3.162
500 7.751 3.212 1x1073  2.755
600 9.204 3.189 1x107%  2.756
700 10.748 3.162 1x107>  2.967
800 12.296 3.155 1x107¢  3.727
900 13.832 3.144 (d) Lambda
1000 15.341 3.144

(c) Number of Iterations

Table 2: Results of Hyperparameter experiments showing
Dparen according to each hyperparameters. DL model used
for experiment is Xception, (a)(b) in conv2d_1 layer and
(c)(d) in conv2d_2 layer.

Skip-connections. It is crucial to use skip-connection on a DL
model for privacy protection. Image reconstruction is possible only
on the very first few layers of the DL pipeline for the DL models
like ResNet or DenseNet that uses skip-connection as a primary
technique for designing the model structure. Even for the DL mod-
els partially including skip-connection in the structure such as
MobileNetV2, InceptionResNetV2, and NASNet, the image recon-
struction is nontrivial compared to other similarly structured DL
models without skip-connection. Therefore, using skip-connection
for the DL model structure design makes the model highly resistant
to the reconstruction attack.

Deeper Networks. Processing a large portion of DL computa-
tion pipeline on a user device reduces the possibility of the recon-
struction attack. In this case, intermediate data available on the
server is extracted from a deeper layer of the DL model, which
makes reconstruction attack challenging. However, the user device
usually has limited computing power and it is critical to carefully
consider the tradeoff between the privacy protection and the per-
formance of DL computation.

Complex Networks. It makes makes reconstruction attack
more difficult to incorporate various DL operations such as an
inception module on a single layer. A simple model structure like
the VGG network or MobileNet, which has a single DL operation
per layer, is likely to be compromised by our reconstruction attack.
However, DL models with diverse DL operations on a layer like
Xception or InceptionV3, are more resistant to the reconstruction
attack even without skip-connection.
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Cost Optimization Techniques. DL optimization techniques
do not affect the performance of the reconstruction attack. The
comparison between the MobileNet and VGG networks show that
optimization techniques like depth-wise separable convolution or
dimensionality reduction with 1x1 convolution hardly affect the
portion of a DL pipeline to offload from which image reconstruction
is possible. Comparison of InceptionResNetV2 and NASNetMobile
also shows that the optimization techniques on the inception mod-
ule does not affect attack performance.

Our insights for privacy protection can be applied as follows to
offload VGG-19 model computation. Without considering privacy,
the usual way would be to execute the front part of the VGG-19
network on a user device and runs the rest of the pipeline in the
server. However, this typical way of splitting the VGG network is
prone to image reconstruction attack, which makes the redesign of
the network essential. We can apply our above-mentioned insights
for the redesign; for instance, we can redesign convolution cells of
the user-side model with skip-connections and inception module.
Training parameters of the re-designed model can be done by ap-
plying transfer learning on the entire model. We expect that such a
modified model can better protect privacy from the reconstruction
attack. The effect of the model redesign needs to be further studied.

6 RELATED WORK

There have been several previous works on privacy attack on a
neural network: For instance, a white-box membership inference
attack with discriminative DL model determines whether a given
input data is a member of training dataset or not [19]. Other work
creates a meta-classifier to determine whether a training dataset
of a DL model has a specific property, using a pattern of infer-
ence output data [2]. These attacks inspect the training dataset
stored in DL models, thereby extracting sensitive information on
the training dataset. Our work studies a different type of privacy
attack, i.e., reconstructing the exact input data which created a
given intermediate data.

The model inversion attack uses Stochastic Gradient Descent
(SGD) to search an input image maximizing the confidence of a
single output class [9]. Our work is closely related to this type
of attack, but it has key differences. The model inversion attack
focuses on visualizing a representative image of an output class,
whereas our work target on reconstructing the exact input image
which made a given intermediate data. Also, our work adopts a
different objective function to rebuild the precise input image from
the intermediate data of the DL pipeline.

Our image reconstruction method is broadly related to DL vi-
sualization and neural style transfer in terms of using SGD. DL
visualization is to find an image visualizing the activation of a
specific DL layer, with SGD [32]. Neural style transfer creates an
artistic image by calculating gradient descent on a multi-objective
function of the content image and artistic style image [10]. Our
work applies SGD for a different problem domain, i.e., exploring
privacy threats and building countermeasures.

Privacy protection measures for deep learning models are ac-
tively being studied. Differential privacy-aware approaches aim to
protect sensitive information of training data [1, 20, 21]. Homomor-
phic encryption(HE)-based approaches makes entire intermediate
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data on DL computation encrypted [3, 6, 11]. Distributed system
and multi-party computation based methods aim to disperse model
data or computation on several machines so an administrator of
a single machine could not have full access on the entire process
[7, 26]. Trusted Execution Environment(TEE)-based approaches
aim to hide DL computation inside the TEE [31].

Compared to these, our countermeasure focuses on protecting
against image reconstruction attack and requires absolutely zero
computational overhead besides DL computation. These various
privacy protection approaches are suggested to protect different
privacy aspects, and most of them bring a significant computational
overhead or accuracy degradation.

7 CONCLUSION

We introduce an input image reconstruction method using only
intermediate data of DL pipeline, and the front portion of DL model
data. We explain privacy attack on DL computation offloading
system exploiting this method. We also present a valid image re-
construction quality metric called image difference. On single Tesla
K80 GPU, we can rebuild input image in 7.7 sec. We experimented
our privacy attack on various DL models to see the influence of
model structures on image reconstruction quality. Image recon-
struction was possible on 82.1 ~ 87.5% of VGG networks and
MobileNet and only 2 ~ 15% on ResNet and DenseNet. We have
inferred several insights to design DL model structure resistant to
certain privacy attack. First, use skip-connection eagerly for the
design. Second, make the model as deep as possible. Third, include
diverse DL operations on a single layer depth like inception module.
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